
NetView® for UNIX®

Configuration Guide
Version 7

SC31-8894-00

Tivoli NetView for UNIX Configuration Guide

Copyright Notice

© Copyright IBM Corporation 2001. All rights reserved. May only be used pursuant to a Tivoli Systems Software
License Agreement, an IBM Software License Agreement, or Addendum for Tivoli Products to IBM Customer or
License Agreement. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any computer language, in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise, without prior written permission of IBM Corporation. IBM Corporation grants
you limited permission to make hardcopy or other reproductions of any machine-readable documentation for your
own use, provided that each such reproduction shall carry the IBM Corporation copyright notice. No other rights
under copyright are granted without prior written permission of IBM Corporation. The document is not intended for
production and is furnished “as is” without warranty of any kind. All warranties on this document are hereby
disclaimed, including the warranties of merchantability and fitness for a particular purpose.

U.S. Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corporation.

Trademarks

IBM, the IBM logo, Tivoli, the Tivoli logo, are trademarks or registered trademarks of International Business Machines
Corporation or Tivoli Systems Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Notices

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply that they will be
available in all countries in which Tivoli Systems or IBM operates. Any reference to these products, programs, or
services is not intended to imply that only Tivoli Systems or IBM products, programs, or services can be used.
Subject to valid intellectual property or other legally protectable right of Tivoli Systems or IBM, any functionally
equivalent product, program, or service can be used instead of the referenced product, program, or service. The
evaluation and verification of operation in conjunction with other products, except those expressly designated by
Tivoli Systems or IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent
applications covering subject matter in this document. The furnishing of this document does not give you any license
to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North
Castle Drive, Armonk, New York 10504-1785, U.S.A.

Contents

Preface . vii
Who Should Read This Guide vii
Prerequisite and Related Documents vii
What This Guide Contains . vii
Typeface Conventions . viii
Platform-Specific Information. viii
Online Information . viii
Accessability Information . ix

Keyboard Access . ix
Contacting Tivoli Support . ix

Chapter 1. Preparing to Use Tivoli NetView 1
Renaming and Deleting Files . 1
Migrating Relational Database Information 1

Migrating from NetView Version 5.1 or 6.0 1
Additional Information . 2
Configuring Client/Server Access. 2

Configuring a Server to Enable Client Access 2
Configuring a Client to Access a Server 2

Chapter 2. Installing and Using the AIX trapgend Daemon 5
Understanding the trapgend Daemon 5
Installing and Configuring trapgend Using the Tivoli desktop. 6
Installing and Configuring trapgend Using a Shell Script 8

Example of a Shell Script . 8

Chapter 3. Uninstalling Tivoli NetView 11
Uninstalling a Client . 11
Uninstalling a Server . 11
Uninstalling trapgend from a Remote Node (AIX only) 12
Uninstalling the Mid-Level Manager 12

Chapter 4. Starting and Stopping Tivoli NetView 13
Startup Behavior of the netview Shell Script 13
Customizing Startup . 13
Preparing to Start Tivoli NetView 14

Checking Daemon Status Using Server Setup 14
Starting Tivoli NetView . 17

Using the netview Shell Script 17
Starting Tivoli NetView Using the Tivoli Desktop 17
Logging Output . 17
Generating the Map . 18

Defining the Network Management Region. 18
Customizing Your Map . 18
Customizing Map Layout . 18
Customizing Discovery . 19
Discovering IP Objects . 19
Discovering Non-IP Objects 19
Displaying Nodes . 20
Map Layout Dependencies 20
Network Design Principles. 20

Accessing Online Help for the Graphical User Interface 21
Accessing Tivoli NetView Online Books 21

iii

||

||

||
||
||

Using Server Setup to Configure and Manage a Tivoli NetView Server 21
Server Setup Context-Sensitive Help 21

Using Client Setup to Configure and Manage a Tivoli NetView Client 22
Client Setup Context Sensitive Help 22

Restarting Automatic Map Generation 22
Steps for Restarting Map Generation 22

Restarting the Daemons . 23
Restarting the Daemons from the Command Line 23
Restarting the Daemons Using the Server Setup Application 24
Registering and Unregistering the Daemons 25

Stopping Tivoli NetView. 27
Stopping the Daemons . 27

Stopping the Daemons Using the Command Line 27
Stopping the Daemons Using the Server Setup Application 28

Chapter 5. Optional Configuration Tasks 29
Changing Daemon Defaults . 29

Changing Daemon Defaults Using the Server Setup Application 30
Understanding the Daemons, Options, and Defaults 31

Using a Location File to Customize the Map Layout 36
Network Entries . 36
Auto-placement of Routers 37
Gateway/Router Entries . 37
Location.conf File Examples 37
Location.conf File Usage Notes 38

Using a Seed File to Customize Discovery. 38
Non-SNMP Devices in a Seed File 38
Editing the Seed File Using Server Setup 39
Format of a Seed File . 39
How netmon Uses a Seed File 40
Discovering Nodes in a Seed File Range 42
Understanding Examples of Seed File Setup and Usage 43
Configuring netmon to Use an MLM Seed File 44

Changing File Owner, Group, or Mode 45
Mapping Symbols to Nodes . 46

Editing the oid_to_sym Registration File. 47
Editing the oid_to_type Registration File 49
Adding Values for Vendor and SNMP Agent Fields 51

Editing the oid_to_command Registration File 51
Adding Entries to the oid_to_command File 52

Editing the oid_to_protocol Registration File 53
Example of an oid_to_protocol File 53

Redirecting X Window Display 53
Using a Relational Database for Data Storage 54
Configuring for Backup Manager 54
Configuring SNMP Values . 54

Configuring Agent Community Names 55
Configuring APM . 57
Forwarding Events to the Tivoli Enterprise Console 57

Configuring Tivoli NetView to Forward Events 57
Customizing the Tivoli Enterprise Console Event Server 58

Chapter 6. Maintaining Tivoli NetView 61
Maintaining Daemon and Process Logs 61

Clearing Log and Trace Files Using the Server Setup Application 61
Maintaining the trapd.log File. 61

iv Configuration Guide

||
||
||
||

Running Commands at Preset Times. 63
Creating a crontab Entry . 63
Example of a Crontab Entry 64

Maintaining Data Collection Files 65
Maintaining the Databases 65

Deleting Unused Entries in the ovsuf File 67
Example of ovsuf File . 67
Deleting Entries in the ovsuf File Using the Server Setup Application 68

Removing Old Snapshots . 68
Removing Snapshots Using the Command Line 68
Removing Snapshots Using the Server Setup Application 69

Cleaning Up the ORS Database 69

Appendix A. Memory, Paging Space, Tuning, and Sizing Considerations 71
Estimating Memory Requirements 71

Determining the Size of the Network 72
Determining the Number of Operators 72
Determining Memory Requirements for Additional Applications 72
Computing Memory Needs Based on Object Count 73
Additional Memory Considerations 74
Miscellaneous Considerations 75

Paging Space Guidelines . 76
Creating or Enlarging Paging Space 76
Indicators That More Paging Space is Required 77

Tuning Tivoli NetView . 78
Network Sizing Guidelines. 79

Appendix B. Additional Notes for AIX 81
Mounting a CD-ROM on AIX . 81
High Availability Cluster Multi-Processing Servers on AIX 81
Tuning Suggestions for AIX Systems 82
Recommended AIX Machine Types 83
Tuning AIX for Tivoli NetView. 83

Appendix C. Saving Files and Installation Entries 85
Saving Files . 85

Saving Files Using the Tivoli Desktop (Version 5 and 6) 85
Saving Files Using Tivoli NetView Server Setup (Version 6 or Higher). . . . 85
Saving Files Using the Migration Script 86

Installation Entries. 86

Appendix D. NDBM Database Enhancements in Tivoli NetView Version 5.1
(AIX only) . 89

NDBM Component Overview. 89
New NDBM Utilities . 90

The dbmcompress Utility . 90
The dbmlist Utility . 90
The nvTurboDatabase Script 91

Implementation . 91
Improving Database Performance without NDBM Enhancements 91
Migration Options . 92
Possible Migration Strategies. 92

Appendix E. Files That Migrate 95

Appendix F. Additional Copyright and License Information 99

Contents v

||
||
||
||

Glossary . 101

Index . 141

vi Configuration Guide

Preface

This document provides information about starting, stopping, configuring, and
maintaining the Tivoli® NetView program.

When referring to the host connection, this book assumes you are connecting to
Tivoli NetView for OS/390®.

Who Should Read This Guide
This book is designed for system administrators and network operators who are
familiar with the operation of networks. Anyone involved in configuring and
maintaining the Tivoli NetView program should read this book.

This book assumes that the user has a general understanding of network
management and of how the Tivoli NetView program fits into that environment. An
understanding of the AIX® or Solaris operating system is required to configure the
Tivoli NetView program.

Prerequisite and Related Documents
The following is a list of Tivoli NetView related publications:

Tivoli NetView Administrator’s Guide
Tivoli NetView Administrator’s Reference
Tivoli NetView Database Guide
Tivoli NetView Host Connection
Tivoli NetView Configuration Guide
Tivoli NetView MLM User’s Guide
Tivoli NetView Programmer’s Guide
Tivoli NetView Programmer’s Reference
Tivoli NetView User’s Guide for Beginners
TME 10™ Framework Reference Manual

What This Guide Contains
This book is organized by task. Each chapter contains a task, or tasks, and the
steps required to complete that task or tasks:

v “Chapter 1. Preparing to Use Tivoli NetView” on page 1

Describes tasks to perform before starting Tivoli NetView, including migrating
relational database information.

v “Chapter 2. Installing and Using the AIX trapgend Daemon” on page 5

Describes the steps for installing the trapgend daemon on remote RS/6000®

nodes and other operations available after installing the trapgend daemon, such
as adding and deleting trap destinations on remote nodes.

v “Chapter 3. Uninstalling Tivoli NetView” on page 11

Describes how to deinstall Tivoli NetView, including deinstalling clients, servers,
the trapgend daemon, and the mid-level manager.

v “Chapter 4. Starting and Stopping Tivoli NetView” on page 13

Describes the processes for starting and stopping the Tivoli NetView program.
This includes starting and customizing the netview shell, defining the network

vii

|
|

|

|
|
|

|
|
|
|

management region, and setting up and configuring servers and clients. This
chapter also provides the steps for starting and stopping the daemons and
restarting map generation.

v “Chapter 5. Optional Configuration Tasks” on page 29

Describes additional configuration options you can apply to the Tivoli NetView
program. You can change the defaults for the daemons, or perform other optional
configuration tasks. For example, you can add entries to the object identification
files (oid_to_type, oid_to_sym, or oid_to_command) anytime after installation.

v “Chapter 6. Maintaining Tivoli NetView” on page 61

Describes on-going maintenance tasks you can do to optimize the performance
of the Tivoli NetView program.

The glossary at the end of this document can assist you with terminology. To view
additional terminology lists, refer to:
http://www-3.ibm.com/ibm/terminology/

Typeface Conventions
This guide uses several typeface conventions for special terms and actions. These
conventions have the following meaning:

Bold Commands, keywords, file names, authorization roles, URLs, or other
information that you must use appear in bold. The names or titles of screen
objects also appear in bold.

Italics Variables and values that you must provide appear in italics.Words and
phrases that are emphasized also appear in italics.

Bold Italics
New terms appear in bold italics when they are defined in text.

Monospace
Code examples, output and system messages appear in a monospace font.

ALL CAPS
Tivoli NetView for OS/390 commands appear in ALL CAPS.

Platform-Specific Information
Refer to the release notes for platform-specific information.

Online Information
The release notes provide the latest information on the Tivoli NetView program.
They are available in HTML and PDF versions. The HTML version is accessible
from the NetView Console using the Help...Books Online menu item. The PDF
version is in /usr/OV/books/$LANG/pdf/readme.pdf.

The online help facility provides task and user interface information.

The online books are available in HTML and PDF versions (Dynatext is no longer
supported). The HTML versions are accessible from the NetView Console using the
Help...Books Online menu item, which will bring up the books in the Netscape
Navigator or Netscape Communicator browser.

PDF versions are available in the /usr/OV/books/$LANG/pdf directory.

viii Configuration Guide

|

|

In addition, you can access online documents at this web site:
http://www.tivoli.com/support

A user name and password are required.

Accessability Information
Refer to Tivoli NetView for UNIX User’s Guide for Beginners for information about
accessability.

Keyboard Access
Standard shortcut and accelerator keys are used by the product and are
documented by the operating system. Refer to the documentation provided by your
operating system for more information.

Refer to Tivoli NetView for UNIX User’s Guide for Beginners for more information
about keyboard access.

Contacting Tivoli Support
If you have a problem with any Tivoli product, you can contact Tivoli Customer
Support. See the Tivoli Customer Support Handbook at the following Web site:

http://www.tivoli.com/support/handbook/

The handbook provides information about how to contact Tivoli Customer Support,
depending on the severity of your problem, and the following information:

v Registration and eligibility

v Telephone numbers and e-mail addresses, depending on the country you are in

v What information you should gather before contacting support

Preface ix

x Configuration Guide

Chapter 1. Preparing to Use Tivoli NetView

This chapter describes tasks that you should complete before starting Tivoli
NetView. This includes:

v “Renaming and Deleting Files”

v “Migrating Relational Database Information”

v “Additional Information” on page 2

Renaming and Deleting Files
You may want to rename or delete any existing files from a previous installation,
such as Version 6 migration files (/usr/OV.back.v6r0). Deleting or renaming these
files prevents data from being migrated if you decide to reinstall Version 7. Deleting
the files also saves file system space.

Note: It is a good idea to tar the backup directory to tape or another archive
medium. You might need it at a later date.

Migrating Relational Database Information
If you have configured your previous NetView installation to use relational database
support which you want to use with your Tivoli NetView Version 7 installation, follow
these steps after installing Tivoli NetView.

Migrating from NetView Version 5.1 or 6.0
By default, relational database management systems (RDBMSs) are not used to
store data. If you have configured your NetView Version 5.1 installation to use a
relational database to store IP topology, SNMP collection, or trapd log data, and you
want to save this information to be used by your Tivoli NetView Version 7
installation, migrate the information.

The following steps are required to migrate the relational database information:

1. Create the RDBMS Interface Module (RIM) object by following the instructions
in the Tivoli NetView Database Guide. Note that you will need to re-create the
RIM object.

2. Using the charts in Chapter 6 of the Tivoli NetView Database Guide, ensure that
tables with a column size of 251 contain no more than 251 bytes. If they do,
edit them down to 251 bytes (this is because the database tables’ maximum
column length was changed from 254 to 251 bytes in Version 5.1.1).

3. If you are migrating from Version 5.1, transfer topology, trapd, and snmpCollect
data from the relational database to flat files. If you are migrating from Version
6.0, transfer snmpCollect data from the relational database to flat files.

4. Clear the relational database tables.

5. Using the new scripts installed by the Tivoli NetView database component in
/usr/OV/scripts, run the appropriate scripts to create new database tables for
the types of data to be stored as follows:

v For Version 5.1, run the topology, trapd, and snmpCollect scripts.

v For Version 6.0, run the snmpCollect script.

These scripts will automatically drop the old schema before creating the new
one.

6. Transfer the flat file data to the (new) relational database.

1

|
|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

|

|

|
|

Refer to the Tivoli NetView Database Guide for specific information on how to
perform the steps outlined above.

Additional Information
The installation procedure adds entries for the Tivoli NetView processes to the
appropriate files. These entries should not be changed. See “Installation Entries” on
page 86 for a description of the installation entries.

Configuring the Tivoli NetView program is not necessary; you can start the Tivoli
NetView program using the defaults provided. However, you can modify the defaults
if you choose. See “Chapter 5. Optional Configuration Tasks” on page 29 for
information about Tivoli NetView configuration options, including daemon options.

If you want the initial map to include all the networks in your administrative domain,
or if you have a large network, you might want to preconfigure your system. For
example, you might want to start netmon with a seed file. See “Using a Seed File to
Customize Discovery” on page 38 for information about starting the netmon daemon
with a seed file.

To increase or decrease the amount of memory used by the ovwdb daemon, see
“Topology Discovery and Database Daemons” on page 31.

Configuring Client/Server Access
If you have installed Tivoli NetView clients, configure the server and clients in the
following order:

1. Configure the server to enable the clients to access it, as described in
“Configuring a Server to Enable Client Access”.

2. Configure the client to access the server, as described in “Configuring a Client
to Access a Server”.

Configuring a Server to Enable Client Access
Multiple clients can access a server simultaneously. You must configure the server
to enable access for each client. To add client access, complete the following steps:

1. Enter /usr/OV/bin/serversetup from the command line to start the Tivoli
NetView Server Setup application.

2. Select Configure –> Configure Tivoli NetView Client –> Add Client Access.
The Add Client Access dialog is displayed.

3. Enter the name of the client and click OK. The results of the command appear
in the Output window.

If the server and client reside in different domains, the /etc/hosts file might need an
additional entry to assist with communications between the server and client.

Configuring a Client to Access a Server
A client can only access one server at a time. Ensure that you have granted the
client access to the server before configuring the client. If you have not, complete
the steps in the “Configuring a Server to Enable Client Access” section. To
configure a client to communicate with a server, complete the following steps on the
client machine:

2 Configuration Guide

|

|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|

1. Ensure that the date and time on the client machine are the same date and time
as are on the server machine. Use the date command to check this. The date
and time must be synchronized for security and map administration to work
correctly.

2. Enter /usr/OV/bin/clientsetup from the command line to start the Tivoli NetView
Client Setup application.

3. Select Configure –> Add/Change Server. The Add/Change Server dialog is
displayed.

4. Enter the name of the server. Select the location for the Map database. This
value determines whether the map database will reside locally on the client
machine or be NFS mounted from the server.

At the time a client is configured to access a server, NFS mounts are performed
from the client to the server for the following:

v /usr/OV/conf

v /usr/OV/databases/snmpCollect

If the map database location is set to NFS, then NFS mounts from the server are
also performed for the following:

v /usr/OV/databases/openview/mapdb

v /usr/OV/databases/openview/defmap

Refer to the release notes for more information.

Chapter 1. Preparing to Use Tivoli NetView 3

|
|
|
|

|
|

|
|

|
|
|

|
|

|

|

|
|

|

|

|

4 Configuration Guide

Chapter 2. Installing and Using the AIX trapgend Daemon

The trapgend daemon is used only with the Tivoli NetView program that runs on an
AIX operating system.

Install the latest level of the trapgend daemon on all remote RS/6000 nodes.
Installing the trapgend daemon on all remote RS/6000 nodes provides additional
management capabilities by:

v Enabling remote ping

v Enabling CPU use and disk space monitoring

v Converting AIX alertable errors to SNMP traps

You can find more information on the trapgend daemon than this section provides
by referring to the Tivoli NetView MLM User’s Guide.

Understanding the trapgend Daemon
The trapgend daemon is a subagent provided with the Tivoli NetView server
program.

The trapgend daemon converts alertable errors generated by a remote RS/6000
node to SNMP traps and sends them to the Tivoli NetView management system.
The traps can be found in two places. On the agent, the trap can be found in
system error log (errpt -c). On the management system, the trap can be found in
the trapd.log.

Note: To include failing hardware information in the alerts, you must install the
Product Topology Data diskette on the remote RS/6000 node. This diskette
contains vital product data for your system unit. For information about
installing the Product Topology Data diskette, refer to the documentation
shipped with your system unit.

The installation process adds an error notification object for the trapgend daemon to
the Object Data Management (ODM) database and automatically starts the
trapgend daemon and the AIX SNMP agent, snmpd, on the remote node.

You can install the trapgend daemon and access trapgend operations using the
following methods:

v Using the Tivoli desktop

Using the Tivoli desktop for trapgend daemon operations enables you to perform
one trapgend operation on one remote node at a time.

See “Installing and Configuring trapgend Using the Tivoli desktop” on page 6 for
information about using Tivoli NetView to access trapgend operations.

v Using the nv6000_smit shell script

Using the nv6000_smit shell script enables you to perform multiple trapgend
operations on a remote node.

See “Installing and Configuring trapgend Using a Shell Script” on page 8 for
information about using the nv6000_smit shell script to access trapgend
operations.

A root password is required with either method.

5

For AIX Only

Use the Tivoli desktop or the nv6000_smit shell script to perform trapgend
operations. However, if you use SMIT, you should be aware that when you
enter the password in the SMIT dialog, the password is written in the smit.log
and smit.script files, which anyone can read. If you leave the SMIT password
field blank, you will be prompted for the password, and the password will not
be written in the smit.log or smit.script files.

With either method, you can perform the following trapgend operations:
v Install or update the trapgend daemon.
v Add and delete trap destinations.
v Start and stop the trapgend daemon.
v Check the status and test the trapgend daemon.
v Remove the trapgend daemon.

Note: You can remove the trapgend daemon from a remote node only if the
Tivoli NetView server program is not installed on the remote node.

Installing and Configuring trapgend Using the Tivoli desktop
You must have root permissions to perform any of the trapgend operations. To
access trapgend operations using the Tivoli desktop, follow this procedure:

1. To access the Tivoli desktop, enter tivoli on the command line.

2. Click and hold down the right mouse button on the server icon to display the
icon’s pull-down menu.

3. Select Configure –> Install/configure subagent (trapgend) on remote
system.

The Install/configure subagent (trapgend) on system dialog is displayed.

Figure 1. Install/Configure Subagent (trapgend) on Remote Node Dialog

6 Configuration Guide

4. Make the necessary changes in the required entry fields. See Table 1 for more
detail about the entry fields.

Table 1. trapgend Options

Option Action

Remote Operation Select one of the following operations you want to perform on the remote node:

Add trap destination only
Add a trap destination on a remote node.

Delete trap destination only
Delete a trap destination on a remote node.

Install subagent
Install the trapgend daemon on a remote node.

Remove subagent
Remove the trapgend daemon from a remote node. The Tivoli NetView
program cannot be installed on the remote node.

Start subagent
Start the trapgend daemon without any other options.

Status of subagent
View status of the trapgend daemon and trap destinations.

Stop subagent
Stop the trapgend daemon.

Test subagent
Test the operation of the trapgend daemon.

Update subagent
Update the remote trapgend key files to the same level at the server.

Remote node name or IP address Enter the node name or IP address of the remote node.

User ID on remote node Enter the user ID on the remote node. The default is root, but you can specify a
user ID that has the appropriate permissions (a member of the system group,
group 0).

Community name for snmpd and
trapgend

Enter the community name of the remote node. The default is public.

IP address of trap destination
node

Enter the IP address of the manager node set to receive traps from the remote
node (if different than the default provided).

User password for remote node Enter the password for the user ID on the remote node. If you type the password
here, it will be displayed as you type it. If you leave this field blank, the program
will prompt you for a password, and it will not be displayed as you type it.

5. Click OK.

6. Do one of the following:

v If you entered a password in the User password for remote node field of the
Install/configure subagent dialog, go to Step 7. The entries will be processed
and the latest trapgend will be installed on the remote node.

v If you did not enter a password, enter a password when the program prompts
you for it. The password will not be displayed as you type it, and the cursor
will not move as you type. The entries will be processed and the latest
trapgend will be installed on the remote node.

7. Click Close.

The dialog closes.

Chapter 2. Installing and Using the AIX trapgend Daemon 7

Installing and Configuring trapgend Using a Shell Script
You can create a shell script to call the /usr/OV/bin/nv6000_smit shell script to
perform multiple trapgend operations on remote nodes. You must have root
permissions to use the /usr/OV/bin/nv6000_smit shell script.

Note: The /usr/OV/bin/nv6000_smit shell script requires a password for the user ID
you specify in your shell script. If you do not want to include the password in
your shell script, run the shell script in the foreground, and you will be
prompted to enter the password. If you want your shell script to be able to
run unattended, you must include the password in your shell script.

To use the /usr/OV/bin/nv6000_smit shell script for multiple operations, follow this
procedure:

1. Create a shell script.

2. Add a new line for each operation you want the shell script to perform. See
“Example of a Shell Script” for an example of lines in the netview shell script.
Each line in the shell script must call the /usr/OV/bin/nv6000_smit shell script
and include the following parameters:

v Keyword (subagentR)

v Operation to perform (install, update, status, start, test, stop, addtrap,
deletetrap, or remove)

v Remote node name or IP address

v User ID on the remote node (root or a user ID with the appropriate
permissions, a member of the system group, group 0)

v Community name

v Trap destination

v Password for the user ID on the remote node (optional). If you do not specify
a password, you will be prompted to enter one when your shell script is run.

3. Save and execute the shell script file.

Example of a Shell Script
The following example shows lines in a shell script created for multiple trapgend
daemon operations. The first line adds a trap destination for a remote node. The
second line installs the trapgend daemon on a remote node.
/usr/OV/bin/nv6000_smit subagentR addtrap mlsnm003 userID \

public 9.67.5.189

/usr/OV/bin/nv6000_smit subagentR install mdcnm008 userID \
public 9.67.163.41 password

The variables indicate the following:

subagentR
Keyword

addtrap
Remote operation

mlsnm003
Remote node name

userID
User ID on the remote node (root or the user ID with the appropriate
permissions, a member of the system group, group 0)

8 Configuration Guide

public Community name

9.67.5.189
IP address of the manager node to receive traps

password
Password for the user ID on the remote node

Chapter 2. Installing and Using the AIX trapgend Daemon 9

10 Configuration Guide

Chapter 3. Uninstalling Tivoli NetView

This chapter describes how to remove Tivoli NetView from your system. It provides
steps to remove Tivoli NetView components and databases. Uninstalling Tivoli
NetView will remove all Tivoli NetView directories and data.

To save the NetView databases or any other customized data before uninstalling,
see “Saving Files” on page 85.

Uninstalling a Client
When you uninstall a client, Tivoli NetView does the following:

v Removes the client code from the client machine.

v Removes the NFS mount connections.

For AIX Only
When you uninstall a client, the trapgend subagent is not removed. If you want
to remove the trapgend subagent, you must do it separately. Refer to
“Uninstalling trapgend from a Remote Node (AIX only)” on page 12.

You must have root permissions to uninstall a client.

Note: If the client you are removing has local maps, delete those maps using the
graphical user interface on the client before you remove the client code.
Refer to the Tivoli NetView for UNIX Administrator’s Guide for instructions. If
you do not remove the client’s local maps, the server’s object database will
contain incorrect information about the number and the location of maps that
exist.

Complete the following steps:

1. Enter /usr/OV/bin/serversetup from the command line to start the Tivoli
NetView Server Setup application.

2. Select Configure –> Remove Server.

The Remove Server dialog is displayed. It is necessary to remove the client
access to the server before uninstalling the client.

3. Make the necessary changes to the dialog fields and click OK. Refer to the
online help for information about these fields.

4. Select Maintain –> Deinstall Tivoli NetView Client. The Deinstall Tivoli
NetView Client dialog is displayed.

5. Change the dialog fields and click OK. Refer to the online help for information
about these fields.

6. Click OK on the verification message dialog to start the removal. The Tivoli
NetView code is removed from the client machine.

7. Click X on the Server Setup application window when deinstallation is complete
to shut down the Server Setup Application.

Uninstalling a Server
Complete the following steps to remove all Tivoli NetView directories and data:

11

|
|

|
|

|
|

1. Exit the Tivoli NetView graphical user interfaces on this server and any clients
or applications that reference this server.

2. Enter /usr/OV/bin/serversetup from the command line to start the Tivoli
NetView Server Setup application.

3. Select Maintain –> Deinstall Tivoli NetView.

4. Select either Deinstall Tivoli NetView (if no dependent products installed) or
Deinstall Tivoli NetView (leave dependent products installed), depending on
whether you want to uninstall Tivoli NetView even if there are dependent
products installed. Refer to the online help for information on these two options.

5. Click OK on the verification message dialog to start the removal. The Tivoli
NetView code is removed from the server machine.

6. Click X on the Server Setup application window when removal is complete to
shut down the Server Setup Application.

Uninstalling trapgend from a Remote Node (AIX only)
You can remove the trapgend daemon from a remote node only if the Tivoli
NetView server is not installed on the remote node. Complete the following steps to
remove trapgend from a remote node:

1. Enter /usr/OV/bin/serversetup from the command line to start the Tivoli
NetView Server Setup application.

2. Select Configure –> Install/configure subagent (trapgend) on remote RISC
System/6000.

3. Select Remove subagent in the Remote Operation field.

4. Make the necessary changes to the dialog fields and click OK. Refer to the
online help for information about these fields.

Uninstalling the Mid-Level Manager
Refer to the Tivoli NetView Mid-Level Manager User’s Guide for information about
removing the Mid-Level Manager.

12 Configuration Guide

|
|

|
|

Chapter 4. Starting and Stopping Tivoli NetView

This chapter provides the necessary steps for starting and stopping the Tivoli
NetView program and its daemons. The following topics are described:
v “Startup Behavior of the netview Shell Script”
v “Customizing Startup”
v “Preparing to Start Tivoli NetView” on page 14
v “Starting Tivoli NetView” on page 17
v “Defining the Network Management Region” on page 18
v “Accessing Online Help for the Graphical User Interface” on page 21
v “Restarting Automatic Map Generation” on page 22
v “Restarting the Daemons” on page 23
v “Stopping Tivoli NetView” on page 27
v “Stopping the Daemons” on page 27

Startup Behavior of the netview Shell Script
This section defines the behavior of the netview shell script, which starts the Tivoli
NetView program.

If you are on the Tivoli NetView server and have root permissions, the netview shell
script first executes the /etc/netnmrc shell script. The /etc/netnmrc shell script starts
the SNMP agent, the nettl facility (the network logging and tracing facility), if they
are not running, and the daemons registered in the ovsuf startup file. The daemons
are started using the ovstart command.

Then, the netview shell script executes the ovw command, which starts the
graphical user interface.

For Solaris Only

The snmpdx daemon and the mibiisa daemon must be running for the Tivoli
NetView server to work correctly. These daemons are part of Sun SEA
technology. To run the snmpdx agent, enter the following command:
/etc/init.d/init.snmpdx start

Customizing Startup
Some Tivoli NetView customers and application vendors want to set environment
variables or execute scripts when the netview command is executed.

To customize the startup process, modify the /usr/OV/bin/netnmrc.applsetup shell
script, /usr/OV/bin/netnmrc.pre shell script, or /usr/OV/bin/netnmrc.aux shell script,
rather than the netview and netnmrc shell scripts. The applsetup, the netnmrc.pre,
and netnmrc.aux shell scripts reside in the /usr/OV/bin directory, which is
automatically backed up and migrated by the update installation or when you select
the /usr/OV/bin.USER category during migration. This prevents the possible loss of
startup configuration because the netview and netnmrc (/etc/init.d/netnmrc on
Solaris or /etc/netnmrc on AIX) shell scripts are subject to modification with each
service update or new version of the Tivoli NetView program. See “Appendix E.
Files That Migrate” on page 95 for more information.

13

|
|
|
|
|
|
|
|
|
|

Users or application vendors who want to set environment variables or execute
scripts when the netview command is executed should make these modifications in
the applsetup script. Each command must run its script in the current process if the
script set or changes environment variables passed to the user interface at startup.

Note: To avoid the loss of startup customization, modifications to the netview script
must be moved to the /usr/OV/bin/applsetup script.

The netview shell script runs the /usr/OV/bin/applsetup script (if it exists), just prior
to starting the graphical user interface. The applsetup script is run in the same
process as the netview command, and thus enables the setting or changing of
environment variables and other customized actions to be performed just as though
the code had been edited into the netview shell script itself.

See the netview man page for more information about editing the applsetup script.

If you want to start processes that run independently of the graphical user interface
and that require root access, make these modifications in the netnmrc.pre or
netnmrc.aux shell script. The netnmrc shell script runs the /usr/OV/bin/netnmrc.pre
shell script, if it exists, before starting the daemons, and runs the
/usr/OV/bin/netnmrc.aux shell script, if it exists, after starting the daemons. Entries
in the netnmrc.pre or netnmrc.aux shell script do not run in the current process.

Note: To avoid the loss of startup customization, modifications to /etc/init.d/netnmrc
on Solaris or /etc/netnmrc on AIX must be moved to the netnmrc.pre and
netnmrc.aux scripts.

Preparing to Start Tivoli NetView
The server installation process starts all the daemons registered in the ovsuf file
and checks the status of the daemons. If you have root permissions, the SNMP
agent and all registered daemons are started when you start the driver graphical
user interfaceusing the netview command or the Tivoli desktop.

To check the statuses of the daemons from the server, use the ovstatus command
or use the Server Setup application. To use the Server Setup application, see
“Checking Daemon Status Using Server Setup”. To check the statuses of the
daemons from the client, use the nvstatus command.

Start any daemons that are not running. If the required daemons are not running,
the graphical user interfacewill not execute. Have the system administrator start the
daemons for you if you do not have root authority.

For information about restarting the Tivoli NetView daemons, see “Restarting the
Daemons” on page 23.

Checking Daemon Status Using Server Setup
The installation process starts all the daemons registered in the ovsuf file. However,
before you start Tivoli NetView, you might want to check the statuses of the
daemons and start them if necessary. You do not need root permissions to check
the statuses of the daemons, but you must have root permissions to start them. If
the required daemons are not running, the graphical user interface will not run.

To check the statuses of the Tivoli NetView daemons, follow these steps:

14 Configuration Guide

|
|
|

1. Enter /usr/OV/bin/serversetup from the command line to start the Tivoli
NetView Server Setup application.

2. Select Control –> Display Tivoli NetView status –> Display status of
daemons.

All the Tivoli NetView daemons and their statuses are displayed. as shown in
Figure 2 on page 16.

Chapter 4. Starting and Stopping Tivoli NetView 15

3. Click OK to close the window.

Figure 2. Display Status of Daemons Example

16 Configuration Guide

Starting Tivoli NetView
Start the Tivoli NetView program using the Tivoli desktop or the netview shell script.
When you use the Tivoli desktop, the netview shell script is used to start the Tivoli
NetView program.

Using the netview Shell Script
Use the netview shell script, which is executable whether you have root permissions
or not, to start the Tivoli NetView program. See the netview man page for
information about the command options. If the /usr/OV/bin directory is not in your
PATH, either execute the /usr/OV/bin/netview command path or add the directory
/usr/OV/bin to your PATH.

Starting Tivoli NetView Using the Tivoli Desktop
To start Tivoli NetView using the Tivoli desktop, follow these steps:

1. Enter tivoli on the command line to access the Tivoli desktop.

2. Click and hold down the right mouse button on the server or client icon to
display pull-down menu.

3. Select Control –> Start user interface.

The Start user interface dialog as shown in Figure 3 is displayed.

Click the buttons beside the entry fields to select the options you want.

4. Click OK.

The Tivoli NetView program starts and the selected map is displayed.

5. To exit, select Exit from the Tivoli NetView File menu.

6. Click OK.

The program closes.

Logging Output
In some cases, Tivoli NetView displays messages on the screen. Whether the Tivoli
NetView program is started from the command line or through the Tivoli desktop,

Figure 3. Start User Interface Dialog

Chapter 4. Starting and Stopping Tivoli NetView 17

these messages and output from integrated applications are also logged in the
netview_$LOGNAME.log file (where LOGNAME is the UNIX login name of the user
starting up NetView). All NetView log files default to usr/OV/log. You can specify an
alternate location and name and edit the log file name in the log output field. The
-nl option is useful if you have an application that writes realtime information to the
stdout or stderr files, and you want to see the errors as they occur. For more
information about some of the log file errors, refer to the Tivoli NetView for UNIX
Diagnosis Guide.

You can change the option to log output through the Tivoli desktop or by starting the
Tivoli NetView program using the netview -nl command. You might find this useful
if you are running applications that produce a large amount of data. This prevents
the log file from increasing and consuming system resources.

Generating the Map
When the daemons are first started, you can expect intense polling traffic, because
the netmon daemon is working to discover objects on your network. The first time
Tivoli NetView creates a map on a client, especially if the database is NFS
mounted, the synchronization may take several minutes.

Generally, a client machine is smaller than a server machine, but the client has to
“learn” all the map information that the server already knows. When the client brings
up the graphical user interface, it synchronizes the information that it displays with
the database information. The amount of time this takes varies according to the size
of your network.

The graphical user interface creates and displays an interactive graphical map,
which represents the logical topology of your network. For each map, an
environment of interactive windows called submaps is created. A submap is a
particular view of some part of the network that displays symbols that represent
objects.

Defining the Network Management Region
The set of networks and nodes that the netmon daemon is monitoring define a
management region. When the daemons are started for the first time, the default
management region is the management system (the node on which the Tivoli
NetView program is executing) and the networks to which it is directly attached. The
map’s initial management region displays networks or subnets, segments, and
gateways. Unmanaged nodes are displayed in beige.

Customizing Your Map
To expand and customize your submap, use the submap menu’s Options..Manage
Objects operation and the Edit menu’s options if you have a map with read-write
authorization. After an unmanaged network is managed, the netmon daemon starts
discovering nodes for that network. Any new networks that are discovered are
discovered as unmanaged. The management region is preserved between
invocations of the graphical user interface.

Customizing Map Layout
You may want to customize the IP Internet topology to reflect your network layout:
geographically, hierarchically, or by some other criteria that is important to your
company. You may create this level of customization in your maps using a location

18 Configuration Guide

file. A location file contains a list of networks, or ranges of networks, and the
locations under which they should be displayed; locations can be nested to create a
hierarchy.

For information about creating a location file, see “Using a Location File to
Customize the Map Layout” on page 36.

Customizing Discovery
The initial management region can also be defined using a seed file. A seed file
contains a list of host names, IP addresses, or a range of IP addresses. A seed file
can be used to restrict network discovery or prioritize discovery so that the most
important nodes are found first.

For information creating a seed file, see “Using a Seed File to Customize
Discovery” on page 38.

Discovering IP Objects
The netmon daemon can discover only IP objects. Initially, the topology map will
contain the following objects:

v IP networks, gateways, and routers on the Internet submap

v Segments, gateways, routers, hubs, and bridges on the Network submaps

v Hosts, gateways, routers, hubs, and bridges on the Segment submaps

Instead of computers, some IP nodes that are connectors, such as bridges and
repeaters, or devices, appear on the map as hosts. However, connectors that
support IP and SNMP appear on the map as the appropriate connector. Whether or
not the nodes are appropriately represented on the map is dependent on the ability
of the management system to map a sysObjectID to an OVW symbol type. For
information about mapping symbols to nodes, see “Mapping Symbols to Nodes” on
page 46.

If an IP node supports SNMP, automatic topology map generation detects its
existence, physical address, IP address, type of device, system Object ID, MIB
data, and other information. If an IP node does not support SNMP, automatic
topology map generation can detect only its existence, physical address, and IP
address.

Discovering Non-IP Objects
When the netmon daemon discovers an IP node, it forwards the SNMP traps to the
trapd daemon. The noniptopod daemon registers with the trapd daemon for
notification of events that indicate an IP address has been discovered.

The noniptopod daemon then issues an snmpget request for all of the object IDs
(OIDs) listed in the oid_to_command file. If an agent responds to the snmpget
request, the start command associated with the OID is executed using the IP
address as a parameter. The application started by the start command is now
responsible for discovering objects supported by the applications protocol and
forwarding its topology data to the gtmd daemon. You must register the noniptopod
and gtmd daemons before you can start them.

See “Registering and Unregistering the Daemons” on page 25 for information on
how to register these daemons. For information about creating the non-IP protocol
proprietary daemon, refer to the Tivoli NetView for UNIX Programmer’s Guide.

Chapter 4. Starting and Stopping Tivoli NetView 19

Displaying Nodes
When putting symbols on a map, the management system matches the sysObjectID
to a symbol type to be used in the map. If the system can match a sysObjectID to a
symbol type, the node will be shown with the appropriate symbol in the map; if not,
the node will be represented as a generic symbol.

For more information about sysObjectID, see “Editing the oid_to_sym Registration
File” on page 47.

A node appears as a gateway if its MIB value for IP forwarding is not zero, and the
node has at least two interfaces. IP nodes with multiple interfaces on the same
network may appear multiple times on segments. A node might also appear as a
gateway if the gateway flag is set in the oid_to_type file.

For more information about the oid_to_type file, see “Editing the oid_to_type
Registration File” on page 49.

If a device within your domain is not specified on your name server, or in the
/etc/hosts file, its IP address will be displayed and not its device name.

Map Layout Dependencies
The map layout and usefulness is dependent on four things:

v Correct subnet masks

v Correct IP addressing

v Network design principles that aid isolation of network faults and traffic

v SNMP-based, MIB-I (RFC 1156), or MIB-II (RFC 1158) compliant agents
throughout the network

The automatically generated topology map showing your networks or subnets and
the gateways that connect them is based on your internetwork’s IP addressing
scheme. It is crucial that IP network (subnet) masks are correct at least on the
management system, all SNMP gateways, all SNMP routers, and all nodes listed in
the seed file. Otherwise, the automatically generated topology map could contain
incorrect networks with nodes from outside your administrative domain.

Network Design Principles
The following design principles can result in a more useful topology map layout:

v The logical breakdown of an internet topology into manageable networks or
subnetworks through gateways and IP addressing. For example, you can
subdivide a large network into several subnetworks, through IP subnetting, with
gateways to route among the subnetworks.

v The physical breakdown of networks or subnetworks into manageable segments
through repeaters, bridges, multiport repeaters, and gateways. For example, you
can subdivide a large segment into several smaller segments connected through
a multiport repeater.

If the automatically-generated topology map layout is not as useful as you would
like, you can use the graphical network map’s editing operations to subdivide
segments.

20 Configuration Guide

Accessing Online Help for the Graphical User Interface
When the graphical network map is displayed, you can use the online Help facility
to find task-specific information.

Tivoli NetView uses Netscape Navigator or Netscape Communicator to display the
online help. To access the list of help topics available, select Help –> Help Topics
from the Tivoli NetView graphical user interface. You may also access the online
help by clicking on Help in any Tivoli NetView dialog box.

Accessing Tivoli NetView Online Books
PDF versions are available in the /usr/OV/books/$LANG/pdf directory.

The Tivoli NetView books are available in PDF format. They are located in the
/usr/OV/books/$LANG/pdf directory. The PDF versions of the books may be read
and printed using the Adobe Acrobat Reader, which is available for download at the
URL: http://www.adobe.com.

Using Server Setup to Configure and Manage a Tivoli NetView Server
The Server Setup application provides a menu-driven interface that lets you
manage a Tivoli NetView server. It allows you to customize Tivoli NetView daemons,
monitor the status of the Tivoli NetView daemons and applications, customize Tivoli
NetView system files, diagnose Tivoli NetView problems, and maintain the Tivoli
NetView databases.

To invoke the Server Setup application, use the following command:
/usr/OV/bin/serversetup

Or, you can add /usr/OV/bin to your PATH environment variable and simply type
serversetup.

You can also invoke the Server Setup application by selecting Administer –>
Server Setup from the Tivoli NetView graphical user interface.

On a Tivoli NetView client, the Server Setup application will prompt for a password
on the server machine and will run remotely on the server machine. If no server has
been set up for the client, this menu option will display the Client Setup menus.

Click on a menu item to expand it or select it. An open folder icon indicates an item
that can be expanded; a file icon indicates an action to be executed. Actions that
require input data will display an options dialog before executing.

Server Setup Context-Sensitive Help
The Server Setup application supports context-sensitive help on all menu items and
option fields. To obtain context-sensitive help on a menu item or option field:

1. Select Help.

2. If you are in the main menu, select the On Context menu item. The cursor
changes to a question mark (?). If you select Help in an options dialog, the
cursor changes directly to a question mark.

3. Click the menu item or option field about which you want help.

Chapter 4. Starting and Stopping Tivoli NetView 21

Using Client Setup to Configure and Manage a Tivoli NetView Client
The Client Setup application provides a menu-driven interface that lets you manage
a Tivoli NetView client. It allows you to configure the server for this client, start the
Tivoli NetView graphical user interface, and deinstall the client.

To invoke the Client Setup application, use the following command:
/usr/OV/bin/clientsetup

You could also invoke the Client Setup application by adding /usr/OV/bin to your
PATH environment variable and entering clientsetup.

Another way to invoke the Client Setup is by selecting Administer –> Client Setup
from the Tivoli NetView graphical user interface.

Click a menu item to expand it or select it. An open folder icon indicates an item
that can be expanded; a file icon indicates an action to be executed. Actions that
require input data will display an options dialog before executing.

Client Setup Context Sensitive Help
The Client Setup application supports context sensitive help on all menu items and
option fields. To obtain context-sensitive help on a menu item or option field

1. Select Help.

2. If you are in the main menu, select the On Context menu item. The cursor
changes to a question mark (?). If you select Help in an Options dialog, the
cursor changes directly to a question mark.

3. Click the menu item or option field on which you want help.

Restarting Automatic Map Generation
If a particular network on the map does not appear as it should, use the graphical
user interface to edit the map. However, if the entire map does not accurately
represent your network, you might want to restart automatic map generation. Root
permissions are required to perform this task.

The following list describes examples of when you might want to restart automatic
map generation:

v IP topology of your entire management domain has changed dramatically.

v Map or topology databases are corrupted.

v Manager station has moved to another network.

Steps for Restarting Map Generation
Because all topology databases are removed when you restart map generation, you
might want to back up your existing databases before you restart automatic map
generation. Root permissions are required.

To back up the databases, stop all the daemons and enter the following command:
tar -cvf /tmp/filename /usr/OV/databases

Where filename is the name of the file in which the data will be saved.

If you need to restore the data, enter the following command:
tar -xvf /tmp/filename

22 Configuration Guide

Where filename is the name of the file in which you saved the data you want to
restore.

To restart automatic map generation, follow these steps:

1. Exit the Tivoli NetView graphical user interface if it is running.

2. Enter /usr/OV/bin/serversetup from the command line to start the Tivoli
NetView Server Setup application.

3. Select Control –> Restart automatic map generation.

A warning dialog is displayed.

4. Click OK to continue.

All the daemons are stopped. All existing databases, except Agent Policy
Manager definitions, SmartSet definitions, and master polling and discovery
settings are deleted.

The /usr/OV/log/trapd.log file, /usr/OV/log/ovevents.log file, and
/usr/OV/log/ovevents.log.BAK file are removed.

All the daemons are restarted.

5. Run the netview command.

The Tivoli NetView program is restarted and a new map is generated. However,
if automatic discovery was turned off before you restarted the daemons, you will
have to restart automatic discovery separately.

Note: When you use the Server Setup application to restart map generation, all the
daemons are stopped and restarted. When you use Server Setup application
to clear map databases, all the daemons are stopped, but not restarted.

Restarting the Daemons
If the daemons stop while the manager system is running, restart them using the
ovstart command or the Server Setup application

You must have root permissions to restart the daemons. You can restart all the
Tivoli NetView daemons or select individual daemons to restart. You can also use
the /etc/netnmrc shell script, which starts all the daemons including the snmpd
daemon. If you are starting daemons individually, all prerequisite daemons are
automatically started.

Restarting the Daemons from the Command Line
Restart the daemons using the ovstart command. To restart all the daemons, enter:
/usr/OV/bin/ovstart

The ovstart command starts the process management daemon, ovspmd, and all of
the background daemons.

Note: The ovstart command does not start the SNMP agent if it is not running. If
the SNMP agent is not running, enter one of the following commands to start
it before starting the other daemons, or execute the /etc/netnmrc shell
script.

For... Enter...

AIX startsrc -s snmpd

Solaris /etc/init.d/init.snmpdx start

Chapter 4. Starting and Stopping Tivoli NetView 23

By using the process name parameter, you can start one or more particular
processes. To restart one daemon, for example the netmon daemon, enter:
/usr/OV/bin/ovstart netmon

In general, the names that you use to start the processes are obvious, but there are
a few exceptions:

If this is the common name... Use this name with ovstart...

orsd OVORS_M

ovelmd ems_log_agent

ovesmd ems_sieve_agent

Normally ovstart reports only if a process fails to start. The -v option requests
“verbose” mode of operation, which produces information about what is occurring
during the startup process. This option is useful for diagnosing problems. For
example, to restart the netmon daemon with verbose mode, enter:
/usr/OV/bin/ovstart -v netmon

If a daemon requires other daemons to be running, the prerequisite daemons are
started automatically.

Restarting the Daemons Using the Server Setup Application
To restart Tivoli NetView daemons using the Server Setup application, follow these
steps:

1. Enter /usr/OV/bin/serversetup on the command line to start the Server Setup
application.

2. Do one of the following:

v Select Control –> Restart all stopped daemons to restart all the daemons.

All the daemons are restarted. Go to Step 7 on page 25.

v Select Control –> Select daemons to stop or restart to select individual
daemons to restart. Go to Step 3.

3. Select one of the following:
v Topology, discovery, and database daemons to stop or restart
v Event and trap processing daemons to stop or restart
v Host connection daemons to stop or restart (AIX only)
v SmartSet and Agent Policy Manager daemons to stop or restart

A dialog displays the names of the daemons.

24 Configuration Guide

4. Select the button next to the daemon(s) you want to restart.

5. Select restart.

6. Click OK.

All selected daemons are restarted.

7. Click Close.

The dialog closes.

Registering and Unregistering the Daemons
The gtmd, noniptopod, otmd, C5d, tralertd, and spappld daemons are not
automatically registered in the startup file. Therefore, these daemons are not started
as part of the default startup process. These daemons must be registered before
they can be started. After they are registered, they are started every time you
execute the netview command as root and the ovstart command or you start the
system, until you unregister the daemons.

You can use the Server Setup application or the ovaddobj command to register the
daemons. The Server Setup application executes the ovaddobj command.

Registering and Starting the Daemons from the Command Line
Use the following commands to register and start a daemon:
/usr/OV/bin/ovaddobj /usr/OV/lrf/daemon.lrf

/usr/OV/bin/ovstart daemon

Where daemon is the name of the daemon you are registering.

Registering and Starting the Daemons Using the Server Setup
Application
To register the daemons using the Server Setup application, follow these steps:

1. Enter /usr/OV/bin/serversetup on the command line to start the Server Setup
application.

Figure 4. Daemon Stop or Restart Dialog

Chapter 4. Starting and Stopping Tivoli NetView 25

2. Select Configure –> Set options for daemons.

3. Select one of the following:
v Set options for topology, discovery, and database daemons
v Set options for event and trap processing daemons
v Set options for host connection daemons (AIX only)
v Set options for Agent Policy Manager daemons

4. Select the daemon you want to register.

The Set Options dialog for the selected daemon is displayed.

5. Click OK. You do not need to change the defaults in the entry fields.

The daemon is registered and added to the startup file.

6. Click Close.

The dialog closes.

If you decide not to use these daemons and do not want them started, you must
unregister the daemons.

See “Unregistering the Daemons” for those instructions.

Unregistering the Daemons
Using the Server Setup application, you can delete daemons from the startup file to
prevent them from being started. You must have root permissions to perform this
task.

Deleting unused daemons from the ovsuf file improves utilization of system
resources. You can delete the following daemons from the ovsuf file:
v spappld (AIX only)
v tralertd (AIX only)

Figure 5. Daemon Dialog

26 Configuration Guide

v gtmd
v noniptopod
v trapgend (AIX only)
v otmd

Unregistering the Daemons Using the Server Setup Application
To delete daemons from the ovsuf file, follow these steps:

1. Enter /usr/OV/bin/serversetup on the command line to start the Server Setup
application.

2. Select Configure –> Delete daemon from ovsuf startup file.

The delete daemon from ovsuf startup file dialog is displayed.

3. Click the button beside Daemon to delete.

The selected daemon is displayed in the Daemon to delete field.

4. Click OK.

The information is processed and a dialog appears with a message that the
daemon is deleted.

5. Click OK.

6. Repeat Steps 3 and 4 for each daemon you are deleting.

The selected daemons are deleted from the startup file, but the daemons are
not stopped if they are running.

7. Click Close.

The dialog closes.

If you decide to use the daemon you deleted, you must register the daemon in the
ovsuf file before you start it.

For more information, see “Registering and Unregistering the Daemons” on
page 25.

Stopping Tivoli NetView
To stop the Tivoli graphical user interface, select Exit from the File pull-down menu.
Selecting Exit does not stop the daemons, only the graphical user interface.

If you want the Tivoli NetView program to continuously monitor and track changes
to your network and the management system, always keep the daemons running,
even if the graphical network topology map is not operational. If you are performing
multiprotocol management, the gtmd and noniptopod daemons should be running
also. If you are using the Agent Policy Manager application, the C5d daemon
should be running. If you have a host connection (AIX only), tralertd and spappld
should continue running.

Stopping the Daemons
Use the command line or the Server Setup application to stop the daemons. You
must have root permissions to perform this task.

Stopping the Daemons Using the Command Line
To stop all the daemons using the command line, exit the graphical user interface
and any other applications that use the daemons, then enter:
/usr/OV/bin/ovstop

Chapter 4. Starting and Stopping Tivoli NetView 27

All the daemons are stopped, except the nvsecd and ovspmd daemons. The
nvsecd daemon must be running for the Tivoli NetView program to run (whether the
security feature is on or off). The ovspmd daemon must be running if any of the
other daemons are running (like nvsecd). If you stop nvsecd, all users are logged
out (if security is turned on). Therefore, limit stopping nvsecd to workstation
shutdown or problem resolution situations. You can stop the nvsecd and the
ovspmd daemons individually.

To stop an individual daemon, such as the netmon daemon, enter:
/usr/OV/bin/ovstop netmon

Note: All daemons that depend on the specified daemon are also stopped.

To stop several daemons at the same time, list each daemon that you want to stop.
For example, to stop the ovwdb, ovtopmd, and netmon daemons, enter:
/usr/OV/bin/ovstop ovwdb ovtopmd netmon

Note: The ovstop command does not stop the nettl facility. To stop the nettl facility,
enter:
/usr/OV/bin/nettl -stop

Stopping the Daemons Using the Server Setup Application
To stop Tivoli NetView daemons, follow these steps:

1. Enter /usr/OV/bin/serversetup on the command line to start the Server Setup
application.

2. Do one of the following:

v To stop all the daemons, select Control –> Stop all running daemons.

All daemons except ovspmd and nvsecd are stopped. Go to Step 8.

v To stop individual daemons, select Control –> Select daemons to stop or
restart. Go to Step 3.

3. Select one of the following:
v Topology, discovery, and database daemons to stop or restart
v Event and trap processing daemons to stop or restart
v Host connection daemons to stop or restart (AIX only)
v SmartSet and Agent Policy Manager daemons to stop or restart

The selection dialog is displayed.

4. Click the button beside the daemon you want to stop.

5. Select Stop.

6. Repeat Steps 3 through 5 for each category of daemons you want to stop.

7. Click OK.

All selected daemons are stopped.

8. Click Close.

The dialog closes.

28 Configuration Guide

Chapter 5. Optional Configuration Tasks

This chapter describes additional ways you can configure the Tivoli NetView
program. The following configuration options are described:

v “Changing Daemon Defaults”

v “Using a Location File to Customize the Map Layout” on page 36

v “Using a Seed File to Customize Discovery” on page 38

v “Changing File Owner, Group, or Mode” on page 45

v “Mapping Symbols to Nodes” on page 46

v “Editing the oid_to_command Registration File” on page 51

v “Editing the oid_to_protocol Registration File” on page 53

v “Redirecting X Window Display” on page 53

v “Configuring for Backup Manager” on page 54

v “Configuring SNMP Values” on page 54

v “Configuring APM” on page 57

v “Forwarding Events to the Tivoli Enterprise Console” on page 57

Changing Daemon Defaults
Changing the defaults for the daemons is not necessary for standard operation.
However, you might want to configure the daemons to use values different from the
defaults provided. For example, if you want netmon to start discovery using a seed
file or if you have a device that supports secondary addressing, go to the netmon
daemon dialog and change the defaults for those options.

You can change the defaults using the command line or the Server Setup
application. This section describes the steps for using the Server Setup application.
Refer to the Tivoli NetView for UNIX Administrator’s Reference for information about
using the command line to set daemon options. Using the Server Setup application
prevents the possibility of creating errors in the LRF files. You must have root
permissions to set options for the Tivoli NetView daemons.

The following changes occur when you change the daemon options using the
Server Setup application:

v Updates the LRF files

v Updates the ovsuf startup files

v Stops and starts the daemons using the new values

From then on, when you start the system or execute the netview and ovstart
commands, the new values are used.

You can change the defaults for the following daemons:

v Topology discovery and database daemons

– netmon

– ovtopmd

– ovwdb

– noniptopod

– gtmd

– otmd

29

v Event and trap processing daemons

– pmd

– orsd

– trapd

– trapgend (AIX only)

– snmpCollect

– ovelmd

– ovactiond

v Host connection daemons (AIX only)

– tralertd

– spappld

v Agent Policy Manager daemon

– C5d

Changing Daemon Defaults Using the Server Setup Application
To use the Server Setup application to change the defaults of the daemons:

1. Enter /usr/OV/bin/serversetup from the command line to access the Server
Setup application.

2. Select Configure –> Set options for daemons. Then, select one of the
following:

v Set options for topology, discovery, and database daemons

v Set options for event and trap processing daemons

v Set options for host connection daemons (AIX only)

v Set options for Agent Policy Manager daemons

The selected menu is displayed.

3. Select a daemon.

The Set options for daemon dialog is displayed similar to Figure 6 on page 31.

30 Configuration Guide

4. Make the necessary changes to the defaults in the entry fields.

5. Click OK.

The information is processed and the options are set.

Note: The daemon may be automatically started, depending on whether all its
dependencies are met.

6. Click Close.

The dialog closes.

Understanding the Daemons, Options, and Defaults
This section lists the daemons, their options, and their defaults as they appear in
the Server Setup application. Refer to the Tivoli NetView for UNIX Administrator’s
Reference or use the online help facility for more information about the options.

Topology Discovery and Database Daemons
Table 2 on page 32 lists all the topology discovery and database daemon options
and defaults.

Figure 6. Daemon Dialog

Chapter 5. Optional Configuration Tasks 31

Table 2. Discovery and Database Daemon Options

Daemon Option Default

netmon Full name of SysObjectID file /usr/OV/conf/oid_to_type

Tracing mask 0

Full name of trace file /usr/OV/log/netmon.trace

Ring bit-swapping storage flag none

Secondary addressing support?
(Will increase network traffic)

no

Full name of seed file

Speed node discovery no

Unnumbered IP address support no

Ignore source route bit in physical
address

no

Use Tivoli NetView MLM for
polling

no

Full name of Tivoli NetView MLM
seed file

Use Tivoli NetView MLM for
discovery

no

Tivoli NetView MLM domain
SmartSet prefix

mlmDomain_

Manage object added by
loadhosts?

no

Always use Alternate Community
Names for polling?

no

ovtopmd Do you want to use an SQL
relational database

no

Use port to receive requests over
TCP/IP

yes

ovwdb Number of objects to hold in
cache

5000

Use port to receive requests over
TCP/IP

yes

noniptopod Full name of configuration file /usr/OV/conf/oid_to_command

gtmd Full name of log file /usr/OV/log/gtmd.log

Full name of trace file /usr/OV/log/gtmd.trace

Seconds between storing data to
database

900

Buffers allocated for trap data
before sending to xxmap

1000

otmd Trace activity no

Maximum size of trace file (KB) 500

Event and Trap Processing Daemons
Table 3 on page 33 lists all the event and trap processing daemons, options, and
defaults.

32 Configuration Guide

Table 3. Event and Trap Processing Daemon Options

Daemon Option Default

pmd Allow the pmd to receive SNMP traps

Allow the pmd to receive
Common Management
Information Protocol (CMOT)
request over TCP/IP

both (tcp and udp)

Allow the pmd to receive CMOT
events over TCP/IP

both (tcp and udp)

Number of users to bind above
the pmd

40

Maximum time (minutes) to keep
an association open without
traffic

15

Maximum time (minutes) to wait
for association open without
traffic

2

Maximum number of network
connections that pmd can
support

1024

Maximum time to wait for
response to confirmed request to
a local agent

4 (minutes)

Maximum time to wait for
response to confirmed request to
a remote agent

6 (minutes)

Use TMN CMIS/CMIP facilities no

orsd Time (minutes) to check if
garbage collection needed

0

Percent data in database before
garbage collection needed

60

Bytes of shared memory
allocated to ORS cache
(inbound)

100

Bytes of shared memory
allocated to ORS cache
(outbound)

100

Bytes of shared memory
allocated to ORS cache (proxy)

100

Chapter 5. Optional Configuration Tasks 33

Table 3. Event and Trap Processing Daemon Options (continued)

Daemon Option Default

trapd Log events and traps yes

Full path name of log file /usr/OV/log/trapd.log

Full path name of trace file /usr/OV/log/trapd.trace

Hex dump all packets
received/sent by trapd?

no

Receive buffer size for TCP/UDP
socket

9216

Create socket connection for
V1R1 applications?

no

Maximum size of trapd.log file:
(KB)

4096

Full path name of trapd log
maintenance script

N/A

Forward specific traps as events
to: (hosts)

N/A

Forward specific traps to: (hosts) N/A

Forward ALL traps to: (hosts) N/A

Port used to receive SNMP traps
over UDP

162

Port used to receive SNMP traps
over TCP

162

Set Trapd connected
applications queue size

2000

trapgend Maximum size log file in
kilobytes

100

Maximum number of log files 5

Full path name of log and trace
file

/usr/OV/log/trapgend.log

Throttle time (seconds) for trap
generation

60

Trace events none

snmpCollect Defer time when node down,
minutes

60

Full path name of trace file /usr/OV/log/snmpCol.trace

Maximum PDU objects 100

Configuration check interval
(minutes)

1440

Maximum concurrent SNMP
sessions

5

Collect on unmanaged nodes no

Tracing is on at start up no

Verbose trace mode no

Polling interval for nvcold (in
minutes)

60

34 Configuration Guide

Table 3. Event and Trap Processing Daemon Options (continued)

Daemon Option Default

ovelmd Maximum size of ovevent.log file
(KB)

128

ovactiond Full path name of log file /usr/OV/log/ovactiond.log

Traces the execution of
ovactiond?

no

Make command output verbose? no

Maximum wait time for
command to execute?

300

Host Connection Daemons
Table 4 lists all the options and defaults for the Host Connection daemons.

Table 4. Host Connection Daemon Options

Daemon Option Default

Tralertd Tracing mask 0

Full path name of trace file /usr/OV/log/tralertd.trace

Service point application name

Service point host name N/A

Using NETCENTER or GMFHS? no

Domain name SNMP

Standalone timeout 90

Using tralertd database no

Clean tralertd database every
(1-30) days

7

spappld Service point host name N/A

Service point application name

Execute shell state bsh (bourne)

Execute shell path /bin:/usr/bin:/usr/OV/bin

Log service point transactions? yes

Full name of log file /usr/OV/log/NV390.log

Tracing mask 0

Full name of trace file /usr/OV/log/NV390.trace

Using NETCENTER or GMFHS? no

Agent Policy Manager Daemon
Table 5 on page 36 lists all the options and defaults for the Agent Policy Manager
daemon, C5d.

Chapter 5. Optional Configuration Tasks 35

Table 5. Agent Policy Manager Daemon Options

Daemon Option Default

C5d Full path name of log file /usr/OV/log/C5d.log

Trace the execution of Agent Policy
Manager?

no

Full path name of trace file /usr/OV/log/C5d.trace

Number of minutes between
daemon attempts

60

Number of threshold events stored
in history file

200

Using a Location File to Customize the Map Layout
Use the /usr/OV/conf/location.conf file to customize the IP Internet map. It
determines how the networks are laid out on your map. It contains locations and the
networks and gateways that should be placed within those locations. Only networks
and gateways are placed under a location symbol. All other symbols, such as
segments, are placed under the network to which they belong.

For examples of using the location.conf file, see “Location.conf File Examples” on
page 37. For information about using location.conf, see “Location.conf File Usage
Notes” on page 38.

After creating or modifying the location.conf file, either create a new map or
regenerate the default map so that the location.conf file can take effect for
networks already existing in your map. As new networks are discovered, they will
be placed as specified in the location.conf file.

To create a new map, select File –> New Map from the NetView console.

To delete the current maps and restart map generation, select Control –> Restart
Automatic Map Generation from the Server Setup application. You can access this
application from the NetView Console (Administer –> Server Setup) or from the
command line by running the /usr/OV/bin/serversetup command.

Refer to the sample location.conf file in the /user/OV/conf directory for the syntax
of the file. Invalid entries are documented in the /usr/OV/log/location.log file and
ignored.

Network Entries
Network entries have the following format:
Name AddressPattern LocationIcon <ParentName>

Where:

Name Name for the location symbol displayed on the map.

AddressPattern
Networks whose network addresses match this pattern will be placed under
the location symbol. See the /usr/OV/conf/location.conf file for details on
the syntax of this pattern.

LocationIcon
Type of location icon to be used. Possible values include: Site, Room, and

36 Configuration Guide

|
|
|
|
|

|
|
|

|

|

|

||

|
|
|
|

|
|

City. Refer to the Help –> Legend menu item from the Tivoli NetView
console for a list of all possible values for the Location icon.

ParentName
Optionally, a previously defined parent location under which this location
symbol should be placed. Using the parent location enables locations to be
nested. Forward references are not valid.

Auto-placement of Routers
A router is placed in the lowest nested location that includes all of the networks to
which the router is connected as follows:

v If all of the router’s networks are inside one location, the router is displayed in
this location connected to all the networks.

v If the router’s networks are in more than one location, the router appears in the
first location (up the parent chain), which includes all of the locations for these
networks. The router is displayed in the parent location connected to one or more
child locations.

v If the router’s networks have no common location in the parent chain, or if one of
the networks is displayed in the IP Internet submap, the router is displayed in the
top level IP Internet submap.

v If the router is discovered as unmanaged, it is displayed in the top level IP
Internet submap (its interfaces have not been discovered in this case).

Gateway/Router Entries
Gateway entries in file location.conf enable you to specify the exact placement of
routers. Use gateway entries if auto-placement entries do not meet your
requirements.

Gateway entries have the following format:
locationName address

Where:

locationName
Name of the location under which the gateway is placed (for example,
London or "London England"

Address
The IP address of one of the gateway’s interfaces (for example,
westford-gate.ma.dev.tivoli.com or 146.84.242.221).

Location.conf File Examples
Following are examples of location files. See “Location.conf File Usage Notes” on
page 38 for more information about using the location.conf file.

Example 1
This location file creates a series of location symbols representing smaller Company
ABC offices. All machines in London have addresses in the range 146.84.223.* to
146.84.226.* (specified as 146.84.223–226). These machines and their associated
segments and subnets would be placed under a location symbol called london
which would live at the IP Internet level of the map. Each location symbol uses the
“Location:Site” icon. Router router1 is placed under the London location.

Chapter 5. Optional Configuration Tasks 37

|
|

|
|
|
|

|

|
|

|
|

|
|
|
|

|
|
|

|
|

|

|
|
|

|

|

|

|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|

scdev 146.84.211-214 Site
sanfrancisco 146.84.218 Site
switzerland 146.84.219 Site
london 146.84.223-226 Site
london router1.london.com

Example 2: This location file creates a nested series of location symbols under a
location called SmallOffices. Only the SmallOffices location symbol appears at the
IP Internet level, the other location symbols are under SmallOffices. Note that the
AddressPattern field for SmallOffices is 0. This implies that no networks should exist
under this symbol, just other location symbols. There are two entries for the SuiteB
location. Networks that match either of these two address patterns will be added
under the SuiteB location symbol
SmallOffices 0 Site
SuiteA 146.84.210 Room SmallOffices
SuiteB 146.84.218 Room SmallOffices
SuiteB 146.84.223-226 Room SmallOffices
SuiteC 146.84.227 Room SmallOffices

Location.conf File Usage Notes
This section provides information about using the location.conf file.

v There is no option to use a different file. If the /usr/OV/conf/location.conf file is
present, it is used.

v Syntax errors in the location.conf file are documented in the
/usr/OV/log/location.log file.

v A parent location must be defined in the location.conf file prior to any child
gateway entries (this is similar to the restriction on nested child location entries).

v Gateway entries take precedence over auto-placement entries.

v If conflicting gateway entries exist in location.conf, the first address that
matches one of the gateway’s interfaces is used.

v You can enclose location.conf file entries in quotation marks.

v If a location.conf file entry includes a blank space, then the entry must be
enclosed in quotation marks.

Using a Seed File to Customize Discovery
A seed file is an ASCII file that helps you specify to the netmon discovery daemon
which nodes in your network should and should not be discovered. A seed file can
contain IP addresses, host names, groups of nodes, and optional comments. The
devices listed in the seed file should support SNMP.

Non-SNMP Devices in a Seed File
Listing non-SNMP devices (or SNMP devices whose community names you do not
know) in the seed file can negatively affect the discovery process. In general,
netmon determines the device subnet based on the IP address and subnet mask of
the last router in the path to the device. If netmon does not know the path to the
device (for example, if the device is listed at the top of the seed file), netmon tries
to get SNMP information from the device to determine the subnet mask. If the
device is non-SNMP and netmon does not know the path, netmon looks at the
class of the IP address and takes the corresponding subnet mask.

If there is a non-SNMP device in your seed file whose subnet mask does not match
the class of the IP address, netmon does not know the path to the device.
Therefore, you should not put non-SNMP devices in your seed file.

38 Configuration Guide

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|

Editing the Seed File Using Server Setup
Use the Server Setup application to add, change, or delete entries in the netmon
seed file. You must have root permissions to perform this task.

Complete the following steps to edit the seed file:

1. Enter /usr/OV/bin/serversetup from the command line to start the Server Setup
application.

2. Select Configure –> Set options for daemons –> Set options for topology,
discovery, and database daemons –> Set options for netmon daemon. The
Set Options for netmon Daemon dialog is displayed.

3. Click Edit. The Network Monitor Seed File Editor is displayed.

4. Select one of the following tabs:

v Select the Discovery tab to add, remove, or edit discovery entries containing
hostnames, IP Addresses, ranges of IP Addresses, or SysObjectIDs.

a. Select either Discover by IP Address or Discover by OID from the
drop-down list

b. Use Add, Remove, or Edit from the appropriate section. The first section
is for nodes to be included in discovery, the second for nodes to exclude
(negative entries).

v Select the Special Features tab to add, remove, or edit SNMP Status or
HSRP entries.

a. Select either SNMP Status Checking or HSRP from the drop-down list.

b. Use Add, Remove, and Edit.

v Click Save to save your changes.

v Select Close from the system menu (accessible by clicking the icon in the left
corner of the title bar) to close the Network Monitor Seed File Editor.

v Click OK.

The netmon daemon is stopped and then restarted using the modified seed
file.

v Select File –> Exit from the menu bar to exit the Server Setup application.

Format of a Seed File
The format of the seed file is a list of host names, IP addresses, or groups of
SNMP nodes within your administrative domain. The nodes in the seed file can be
either a specific node or groups of nodes. A specific node can be an IP address or
a host name. A group of nodes can be an IP address range, multiple host names,
or nodes specified by object OID. You can specify a group of nodes using the
following methods:

v Specify an IP address range, by using the hyphen (-) to indicate a range of
numbers or an asterisk (*) to match any number. Here are two examples:
9.67.179.70-79
9.*.160.*

v Specify multiple host names by using an asterisk (*) to match zero to any
number of characters or a question mark (?) to match any one character.

The following group of nodes matches all company nodes starting with hdcp:
hdcp*.company.com

The following group of nodes matches router1.company.com and
router2.company.com:
router?.company.com

Chapter 5. Optional Configuration Tasks 39

v Specify multiple nodes by OID. You can use an asterisk (*) at the end of an OID
to match any OID beginning with the OID specified before the asterisk. Use the
asterisk only at the end of an OID. If you do not use a pattern matching
(wildcard) character in the OID, the OID must match exactly.

The following group of nodes matches all Windows** 95 nodes:
@oid 1.3.6.1.4.1.311.1.1.3.2 #Windows 95 nodes

The following group of nodes matches all Cisco products beginning with an OID
of 1.3.6.1.4.1.9:
@oid 1.3.6.1.4.1.9.* # All Cisco products

v Specify nodes that you do not want netmon to discover by preceding specific
nodes or groups of nodes with an exclamation mark (!). If a group of nodes is
specified without the ! operator and an overlapping group of nodes is specified
with the ! operator, the ! operator has the higher priority. Nodes in the
overlapping range will not be discovered. If you have listed specific nodes in the
seed file that also fall within a range of nodes specified with the ! operator, the
specific nodes have the higher priority. The specific nodes will be discovered.

v Specify nodes that you want to status poll using SNMP instead of PING by
preceding the nodes with a dollar sign ($). For these nodes, netmon will use
SNMP queries for ifAdminStatus and ifOperStatus to determine the status.

v Specify HSRP virtual interfaces by preceding the IP Address with the %
character.

The seed file must have one entry per line. A # character indicates the beginning of
a comment; other characters from the # character to the end of the line are ignored.

Note: You choose the name and location of the seed file. The seed file name you
choose cannot contain a colon. Seed file names are saved in the LRF file for
netmon. Because the LRF file uses a colon as a separator, do not use a
colon in the seed file name.

Seed File Format Examples
The following example shows the format of a seed file that expands the initial
discovery process:
nodel.division.company.com
router4.division.company.com #Gateways make the best seeds
9.67.1.5

The following example shows the format of a seed file that limits the discovery
process:
router2.division.company.com
router3.division.company.com
9.67.179.70-79
9.67.179.200
9.*.160.*

Routers are included in this example to provide a path to the nodes within the IP
address range 9.67.179.70-79 that are more than one router away from the
management station.

How netmon Uses a Seed File
The following factors affect how netmon uses a seed file:

v Whether New Node Discovery is turned on or off.

40 Configuration Guide

v Whether there are specific IP addresses or host names specified in the seed file.
Listing specific IP addresses or host names in the seed file tells netmon which
nodes to discover.

v Whether there are groups of nodes specified in the seed file. Listing groups of
nodes in the seed file tells netmon which nodes not to discover. The netmon
daemon will not discover nodes that are not included in the groups of nodes, for
example, nodes that are outside of an IP address range.

v Whether there are specific nodes or groups of nodes preceded by an
exclamation mark (!) in the seed file. The netmon daemon will not discover these
nodes.

Table 6 summarizes how discovery can be affected by the New Node Discovery
setting and the contents of the seed file:

Table 6. Discovery Process Using a Seed File

New Node Disc
Switch

Groups of
Nodes

Specific IP
Addresses
and/or Names Minimum discovered (*) Maximum discovered

OFF No No Tivoli NetView workstation Tivoli NetView workstation

OFF No Yes The nodes listed in the seed
file

The nodes listed in the seed
file

OFF Yes No Tivoli NetView workstation Tivoli NetView workstation

OFF Yes Yes The nodes listed in the seed
file

The nodes listed in the seed
file

No No Tivoli NetView
workstation

All nodes in your network

ON No Yes The nodes listed in the seed
file

All nodes in your network

ON Yes No Tivoli NetView workstation All nodes that reside within
the group of nodes

ON Yes Yes The nodes listed in the seed
file

All nodes that reside within
the group of nodes

Note: Netmon discovers the node on which netmon resides, regardless of the seed file or the New Node Discovery
settings.

Discovering Specific Nodes
If you list specific IP addresses and host names in a seed file, netmon will discover
only the nodes of those addresses and names. If you place a specific IP address in
a seed file, the node that has that IP address will be discovered as long as the IP
address responds to a ping.

When you are building your seed file, consider the following facts:

v Names of the nodes listed must be resolvable for netmon to start when
processing the seed file. For example, if the node name bogus was listed in the
seed file and was not resolvable in th network, netmon would not start. If that
occurs, the ovstatus command indicates that a seed file problem has occurred
and the /usr/OV/log/netmon.trace file contains the name of the failing node. The
name of the unresolvable node should be removed from the seed file and
netmon should be restarted.

v If New Node Discovery is turned off, netmon still tries to discover the nodes that
have IP addresses listed in the seed file.

Chapter 5. Optional Configuration Tasks 41

v If New Node Discovery is turned on, netmon first tries to discover all of the nodes
that have IP addresses in the seed file, and then tries to discover additional
nodes not listed in the seed file.

v If you cannot ping an IP address in the seed file, netmon cannot create a node
for the IP address.

v If netmon discovers an IP address in the seed file in a network that has not been
discovered, netmon creates and manages that network.

v If netmon discovers a node, it discovers all IP addresses on that node,
regardless of whether those IP addresses are listed in the seed file.

v netmon always discovers the node on which netmon resides regardless of
whether New Node Discovery is on, and regardless of whether that node is listed
in the seed file.

v You should not list non-SNMP devices in a seed file. Doing so can negatively
affect the discovery process.

See “Non-SNMP Devices in a Seed File” on page 38 for more information.

Limiting Discovery
You can eliminate nodes from discovery in either of the following two ways:

v Listing one or more IP address ranges, multiple host names, or nodes specified
by OID in a seed file tells netmon to ignore all IP addresses outside those groups
of nodes. A group of nodes is very much like a filter.

v Listing specific nodes or groups of nodes preceded by an exclamation mark (!)
tells netmon to ignore these nodes.

When you are building your seed file, consider the following facts and exceptions:

v Specifying groups of nodes does not guarantee that netmon will discover nodes
within those groups; it guarantees that netmon will not discover nodes that are
outside the groups. To ensure that netmon discovers a node within a group of
nodes, see “Discovering Nodes in a Seed File Range”.

v netmon discovers the node on which netmon resides regardless of whether New
Node Discovery is on, and regardless of whether that node is within the groups
of nodes listed in the seed file.

v When netmon discovers a node, it discovers all IP addresses on that node,
regardless of whether those IP addresses lie outside the groups of nodes in the
seed file.

v If New Node Discovery is turned off, netmon ignores whether you specified
groups of nodes in the seed file.

v netmon discovers individual IP addresses and host names in a seed file
regardless of whether they lie outside the groups of nodes in the seed file or
regardless of whether they are included in a group of nodes specified with the !
operator.

v If a group of nodes is specified without the ! operator and an overlapping group
of nodes is specified with the ! operator, nodes in the overlapping group will not
be discovered.

v When netmon discovers a node, the node will not be deleted as a result of
changing your seed file (although the node might be deleted for other reasons).
You cannot redefine IP address ranges in the seed file to remove existing nodes
from your map.

Discovering Nodes in a Seed File Range
To ensure that netmon discovers a node within a seed file IP address range, the
following criteria must be met:

42 Configuration Guide

v The network in which the node resides must be managed in the IP topology
database.

v netmon must be instructed to discover an IP address in the node.

There are various ways to make sure that the network in which the node resides is
managed in the IP topology database:

v Manually add the network symbol using the graphical user interface.

v Make sure that the gateway leading to that network is discovered and manually
manage the network symbol on the map.

v Put the node’s address in the seed file. If a node’s IP address is included in the
seed file, netmon will automatically create its network.

v Put the IP address of another node that is in the same network in the seed file to
tell netmon to create its network.

When the network is managed in the IP topology database, netmon needs to “learn”
the existence of the IP addresses of the nodes you want netmon to discover. In
most cases, after netmon discovers the network, netmon can discover the nodes
inside the network by checking various tables in various MIBs of nodes that it has
already discovered. In some cases, netmon might have no way of learning of the
existence of that node. For example, the node might generate too little network
traffic. When this happens, and you want to guarantee that netmon discovers the
node, provide these specific IP addresses in the seed file. See “Understanding
Examples of Seed File Setup and Usage” for examples.

Understanding Examples of Seed File Setup and Usage
This section provides examples of using a seed file.

Telling netmon Where to Start Looking for Nodes without
Limiting Discovery
If you want Tivoli NetView to use your seed file as a starting point and then
discover the rest of the nodes, create a seed file that contains only a list of
individual IP addresses and host names using the Network Monitor Seed File
Editor. See “Editing the Seed File Using Server Setup” on page 39 for information
on using the NetWork Monitor Seed File Editor. See “Discovering Specific Nodes”
on page 41 for a list of considerations for this seed file.

When you use this procedure, netmon is not limited to discovering the nodes in the
seed file. You can use this procedure to ensure that netmon discovers certain
nodes, especially nodes that are more than one hop beyond the management
station.

Limiting Discovery to the Nodes Individually Listed in the Seed
File
If you want Tivoli NetView to discover only the nodes in the seed file, complete the
following steps:

1. Enter netview to start the Tivoli NetView graphical user interface.

2. Select Options –> Topology/Status Polling Intervals: IP from the menu bar.

3. Turn Discover New Nodes off.

4. Click OK.

5. Select File, then Exit, from the menu bar.

Chapter 5. Optional Configuration Tasks 43

6. Create your seed file (see “Editing the Seed File Using Server Setup” on
page 39 for information on using the Network Monitor Seed File Editor). Refer to
“Discovering Specific Nodes” on page 41 for a list of considerations for this seed
file.

7. Clear the topology databases (see “Clearing Databases” on page 67).

8. Restart the daemons by either starting the NetView graphical user interface as
the root user, or start only the daemons using the Server Setup application or
the ovstart command.

Limiting Discovery to a Range of Nodes Using Seed File
Wildcards
To limit discovery to the nodes within a certain group of nodes, complete the
following steps:

1. Create your seed file using the Network Monitor Seed File Editor. See “Limiting
Discovery” on page 42 for a list of considerations for this seed file.

At least one of the lines in the seed file must contain a pattern matching
(wildcard) character (either * or - for IP address ranges; * or ? for multiple host
names) or multiple nodes specified by OID. See “Editing the Seed File Using
Server Setup” on page 39 for information on using the Network Monitor Seed
File Editor.

2. Clear the topology database. See “Clearing Databases” on page 67.

3. Restart the daemons using the Server Setup application or the ovstart
command.

Again, specifying a group of nodes in a seed file does not guarantee that netmon
can discover anything within the group. When you specify a group of nodes, you
are telling Tivoli NetView not to discover anything outside the group. To ensure that
nodes within the group are discovered, you should explicitly list a few specific IP
addresses in the seed file that fall within the group of nodes. A group of nodes is
like a filter, and specifying a group of nodes by itself does not help the netmon
daemon discover nodes.

You can use a group of nodes in a seed file to limit discovery to a list of specific IP
addresses without turning the new node discovery option off. To do this, create a
seed file that contains a list of IP addresses and a group of nodes that you know
has no IP addresses. For example, if you want to discover only IP addresses
1.1.1.1 and 1.1.1.2, and you know that you do not have any IP addresses in the IP
address range 3.*.*.*, you can create a seed file as follows:

1.1.1.1
1.1.1.2
3.*.*.*

This seed file would limit the discovery to the two IP addresses and would not
require that you turn off the new node discovery option.

Configuring netmon to Use an MLM Seed File
You can configure the netmon daemon to use a MLM seed file or any other kind of
seed file. When you configure netmon to use a seed file that contains a list of MLM
nodes, the MLM polls nodes in its own domain and reports status changes to the
Tivoli NetView program. The MLM seed file makes sure that your MLM nodes are
discovered quickly. Refer to the Tivoli NetView for UNIX Mid-Level Manager User’s
Guide for more information.

44 Configuration Guide

To configure the netmon daemon to use any seed file, you must have root
permissions. Complete the following steps:

1. Enter serversetup on the command line to start the Server Setup application.

2. Select Configure –> Set options for daemons –> Set options for topology,
discovery, and database daemons –> Set options for netmon daemon.

The set options for netmon daemon dialog is displayed.

3. Scroll to Use Tivoli NetView MLM for Polling and click Yes.

4. Type the full path name of the MLM seed file in the Full name of Tivoli
NetView MLM seed file field.

5. Click OK.

The information is processed. The netmon daemon will use the specified MLM
seed file the next time the netmon daemon is started.

6. Click Close.

The dialog closes.

If you are using a seed file to limit the discovery process, restart map generation to
remove nodes from the database and put only those nodes listed in the seed file
into the database. When you restart map generation, all existing databases are
removed. When you restart the Tivoli NetView program, the seed file is used to
generate a new map.

See “Restarting Automatic Map Generation” on page 22 for information about how
to restart map generation.

After initial map generation using a seed file, any expansion of the topology map
takes precedence over the contents of the seed file. However, if the seed file
contains nodes not already on the topology map, these nodes and their
corresponding networks are added to the topology map when the netmon daemon
is started. The seed file is used every time the netmon daemon is started.

Changing File Owner, Group, or Mode
You can use the Server Setup application to change file owners, file groups, and file
modes for all Tivoli NetView topology database files. You must have root
permissions to perform this task. These changes do not affect the owner, group, or
mode for directories.

To change an owner, group, or mode, follow these steps:

1. Exit the Tivoli NetView graphical user interface, if it is running, by selecting
File..Exit from the menu bar.

The graphical user interface windows close.

2. Enter serversetup on the command line to start the Server Setup application.

3. Select Configure –> Change Map(s) owner/group/mode.

The Change Map(s) owner/group/mode dialog is displayed.

Chapter 5. Optional Configuration Tasks 45

4. Type or select the entries for:

v User ID of new owner

v Group ID of new group

v Permission codes for new mode: read (4), write (2), or execute (1). To specify
a group of permissions, add together the appropriate octal numbers, as
follows:

3 = -wx (2 + 1)
6 = rw- (4 + 2)
7 = rwx (4 + 2 + 1)
0 = --- (no permissions)

v Change global map permissions owner/group/mode (o/g/m) only. Indicate yes
or no.

v Map name to change

v List current permissions, owner, and group

The information is displayed in the entry fields.

5. Click OK.

The information is processed.

6. Click Close.

The dialog closes.

Mapping Symbols to Nodes
The nodes in your network are represented in the graphical user interface as
symbols. The Tivoli NetView program displays these symbols based on mappings
from the sysObjectID to symbol types, vendors, SNMP agents, and IP topology
attributes. This mapping is done using the following configuration files:

v oid_to_sym

The IPMap and xxmap applications use the oid_to_sym configuration file. The
/usr/OV/conf/C/oid_to_sym configuration file specifies a mapping from the
sysObjectID of an agent to a default symbol class and subclass. The Tivoli

Figure 7. Change Map(s) Owner/Group/Mode Dialog

46 Configuration Guide

NetView program chooses an appropriate symbol type to represent nodes in the
IP topology maps in the graphical user interface based on the value of
sysObjectID.

v oid_to_type

The netmon daemon uses the oid_to_type configuration file to map the
sysObjectID of a node into the correct IP topology behavior and to the correct
vendor and SNMP agent values. The /usr/OV/conf/oid_to_type configuration file
specifies a mapping from the sysObjectID of an agent to the correct IP topology
behavior and to the correct vendor and SNMP agent values. The oid_to_type file
shipped with the Tivoli NetView product contains entries for specific network
devices.

This section describes how you can edit these files so that the nodes in your
network will be represented with an appropriate symbol in the graphical user
interface.

Editing the oid_to_sym Registration File
The oid_to_sym file shipped with the Tivoli NetView program contains entries for
various agents. You can edit these entries or add new ones.

Steps for Adding an Entry to the oid_to_sym File
Use the Server Setup application to add or change entries in the oid_to_sym file.
Edit the oid_to_sym file using your text editor to delete entries from the file. You
must have root permissions to perform this task.

To add an entry to the oid_to_sym file, follow these steps:

1. Enter serversetup on the command line to start the Server Setup application.

2. Select Configure –> Configure object identification registration files –>
Update oid_to_sym registration files.

The Update oid_to_sym registration file dialog is displayed as shown in
Figure 8.

3. In the entry fields, type or select the required information.

See “Field Definitions” on page 48 for information about the fields.

4. Click OK.

Figure 8. Update oid_to_sym Registration File Dialog

Chapter 5. Optional Configuration Tasks 47

The information is processed, and the entry is added or changed.

5. Click Close.

The dialog closes.

Note: Existing symbols will not be changed. To change existing symbols, select
Edit..Change symbol type operation from the Tivoli NetView graphical
user interface.

Example of an oid_to_sym File
Each entry in the oid_to_sym file consists of three fields separated by a colon (:).
The following example is from the default oid_to_sym file:

IBM Network Enterprises
1.3.6.1.4.1.2.3.1.2.1.1.2:Computer:Workstation # IBM AIX workstation
1.3.6.1.4.1.2.2.1.2.2:Computer:PC # IBM TCP/IP Agent on OS2
1.3.6.1.4.1.2.6.1:Connector:Bridge # IBM 3172 LAN attachment
1.3.6.1.4.1.2.2.1.2.3:Computer:Main Frame # IBM 3090 TCP/IP Agent

Field Definitions: The following list describes the fields used in the example of
the oid_to_sym file:

v The first field is the value of the Internet-standard MIB-II system.sysObjectID
reported by the device’s SNMP agent. For example:
1.3.6.1.4.1.11.2.3.2.2.

v The second field is the default symbol class. Valid symbol class entries are
connector, computer, or device. The default value is computer.

v The third field is the default symbol subclass. Some valid symbol subclass
entries for the computer class are workstation, mini, and PC.

The class and subclass fields together make up the OVW symbol type. The number
symbol (#) indicates the beginning of a comment. Blank lines are ignored.

The values for symbol class and subclass must match one of the symbol types
registered with the graphical user interface, or you can create new symbols. To see
the currently defined symbols, see the /usr/OV/symbols/C registration files or
Help..Legend.

To learn how to create new symbols, refer to the Tivoli NetView for UNIX
Programmer’s Guide.

Example of Changing a Symbol: If you want to change the symbol for an
RS/6000 320 agent from the default symbol subclass Workstation to a
minicomputer, edit the following line:
1.3.6.1.4.1.11.2.3.2.2:Computer:Workstation # 320

to look like this:
1.3.6.1.4.1.11.2.3.2.2:Computer:Mini # 320

When you add new symbol types you can add or change entries in the oid_to_sym
file to take advantage of the new symbols. However, the symbol class and subclass
must always match the list of symbols supported by the graphical user interface. If
they do not match, ipmap may not be able to add the symbol to the IP topology
map.

48 Configuration Guide

Editing the oid_to_type Registration File
You can edit the existing file and add or change lines as needed.

Making Changes to the oid_to_type File
Use the Server Setup application to add or change entries in the oid_to_type file.
Edit the oid_to_type file using your text editor to delete entries from the file. You
must have root permissions to perform this task.

To add or change an entry, follow these steps:

1. Enter serversetup on the command line to start the Server Setup application.

2. Select Configure –> Configure object identification registration –> Update
oid_to_type registration file.

The Update oid_to_type registration file dialog is displayed.

3. Enter the required information, or click the button beside the entry fields to
select from a list of choices.

See “Field Definitions” for a description of these fields.

4. Select OK.

The information is processed, and the entry is added or changed.

5. Select Close

The dialog closes.

Example of an oid_to_type File
Each entry in the oid_to_type file consists of four fields separated by a colon (:).
The following example shows sample entries in the oid_to_type file:
1.3.6.1.4.1.2.3.1.2.1.1.2:IBM:IBM RS/6000:H # SNMP agent for AIX 3.2
1.3.6.1.4.1.23.1.1.1:Novell:Novell Lantern
1.3.6.1.4.1.42.2.1.1:Sun:Sun Microsystems SunOS
1.3.6.1.4.1.36.1:DEC:DECstation

Field Definitions: The following list describes the fields used in an entry of the
oid_to_type file, shown under “Example of an oid_to_type File”. These fields also
apply to the entry fields used in the configuration utility.

v The first field is the value of the Internet-standard MIB-II system.sysObjectID
reported by the device’s SNMP agent. For example: 1.3.6.1.4.1.23.1.1.1.

Figure 9. Update oid_to_type Registration File Dialog

Chapter 5. Optional Configuration Tasks 49

v The second field is the vendor that manufactures the given device or node. The
vendor name must match one of the enumerated values in the field registration
file, /usr/OV/fields/C/ovw_fields, for the vendor field, such as IBM,
Hewlett-Packard, Sun, or DEC. If the vendor name does not match, it is not set.
You can add new values to the vendor field. See “Adding Values for Vendor and
SNMP Agent Fields” on page 51 for more information.

v The third field is the agent type currently running on the given device or node.
The agent name must match one of the enumerated values in the field
registration file, /usr/OV/fields/C/snmp_fields, for the SNMPAgent field. The
typical agent name includes the manufacturer of the agent software and the type
of device on which the agent software runs, such as RS/6000and AIX Version 3
Release 2 SNMP agent.

v The fourth field is a set of flags controlling the topology attributes that should be
applied to an object with this sysObjectID. The topology attributes field controls
how the device will be treated by the IP-specific components of the system.
These are only default attributes; if it can be determined that a device is or is not
performing any of these roles, the attributes for that particular device will be set
correctly. Specifically, any combination of flags may be applied to a sysObjectID.

Topology Attribute Flags: Table 7 describes the flags that can be used in the
fourth field of the oid_to_type file:

Table 7. SNMP Topology Attributes

Flag Meaning

G Treat the device topologically as a gateway (router). A symbol for this object will
appear in the Segment, Network, and Internet submaps, and the symbol can be
used to connect networks.

B Treat the object as a bridge or simple repeater. A symbol for objects with this
sysObjectID will appear in the Segment and Network submaps, and the symbol
can be used to connect segments.

H Treat the object as a multiport repeater or hub. A symbol for objects with this
sysObjectID will appear in the Segment and Network submaps, and the symbol
can be used to connect segments. Also, this symbol can appear at the center
(hub) of Star segments.

I Ignore the node’s ability to support SNMP.

P Poll these devices for status using SNMP instead of ICMP pings. Checks both
ifAdminStatus and ifOperStatus.

S Treat the device as if it supports secondary addresses but does not report them
via SNMP in its ip.ipAddrTable. These devices have interfaces that are added,
deleted, and then re-added by the netmon daemon in a regular pattern. The S
option prevents the deletion of the secondary interfaces.

T Report the node’s address as if it were a terminal server.

U Treat the device as if it were unmanaged.

W Assume that the device has a default Web management page at the URL
“http://hostname.” The following fields will be created, if necessary, and set:

isHTTPSupported True
isHTTPManaged True
ManagementURL http://hostname

Note: Special attributes such as “S” and “W” cannot be added using the Server
Setup application. Edit the oid_to_type file using a text editor to add these
special attributes.

50 Configuration Guide

Adding Values for Vendor and SNMP Agent Fields
To define additional values for the vendor and SNMP Agent fields, follow these
steps:

1. Create a file with definition extensions.

For example, if you work for the Cary Company and you want to add four
entries to the SNMP Agent field, create a new file with the following information:
Field "SNMPAgent" {

Type Enumeration;
Flags capability, general, locate;
Enumeration "Unset",

"Lou Router",
"Calvin Hub",
"Greg Bridge",
"Ken Repeater";

}

Field "vendor" {
Type Enumeration;
Flags capability, general, locate;
Enumeration "Unset",

"Cary Company";
}

2. Save your new file in the /usr/OV/fields/C directory.

3. Enter ovw -fields to add the new definitions to the object database.

The first four lines of the SNMP Agent field are identical to the definition lines in the
snmp_fields file, and the first four lines of the vendor field are identical to the
definition lines in the ovw_fields file. The values, except for "Unset", must be unique
from those defined in the standard Tivoli NetView program.

For more information about the syntax, refer to the Tivoli NetView for UNIX
Programmer’s Guide.

The new definitions appear in the General Attributes selection when you select Edit
–> Modify/Describe from the menu bar. The new definitions can be referenced in
oid_to_type mappings described in “Editing the oid_to_type Registration File” on
page 49.

Editing the oid_to_command Registration File
The /usr/OV/conf/oid_to_command registration file contains a list of OIDs and the
associated commands provided by the proprietary protocol owners, for example,
FDDI and Advanced Peer-to-Peer Networking (APPN). Each entry in the
oid_to_command registration file includes the following:
v Object ID (required)
v Host name (required only if the host is remote)
v Start command (required)
v Stop command
v Comment

Use the Server Setup application to add an entry to the oid_to_command
registration file. To change or delete entries, use your text editor to edit the file. You
must have root permissions to perform this task.

Each entry in the oid_to_command registration file must conform to the following
syntax:
OID [host name:]start command [options] | [stop command] [options]

Chapter 5. Optional Configuration Tasks 51

Adding Entries to the oid_to_command File
To add an entry to the oid_to_command registration file, follow these steps:

1. Enter serversetup at the command line to access the Server Setup application.

2. Select Configure –> Configure object identification registration files –>
Update oid_to_command registration file.

The Update oid_to_command registration dialog is displayed.

3. Type the required information in the entry fields.

See “Field Definitions” for more information.

4. Click OK.

The information is processed, and the new entry is added.

5. Click Close.

The dialog closes.

Example of oid_to_command File
Following are examples of entries in the oid_to_command registration file:
1.0.8571.5.1 aixnmj01:/home/sam/my_daemon | /home/sam/3xtree/stop_daemon

1.0.56.78 /my_sub/bin/start_daemon | /my_other_sub/bin/stop_daemon

Note: The host name should be provided only if the host is remote. Do not add the
host name if the host is local.

Field Definitions
The following list describes the fields used in an entry of the oid_to_command
registration file. These fields also apply to the entry fields used in the configuration
utility. See “Editing the oid_to_command Registration File” on page 51 for an
example.

v The first field is the OID. This must be in dot-notation format (for example,
1.2.3.4.5.).

Figure 10. Update oid_to_command Registration Dialog

52 Configuration Guide

v The second field is the host name. A host name is necessary only when the host
is remote. This is the name of the host where the proprietary protocol daemon
resides. You must have authorization to execute processes on this remote host.
The proprietary protocol daemon is expected to forward topology information to
the gtmd daemon.

For information about creating the protocol proprietary daemon, refer to the Tivoli
NetView for UNIX Programmer’s Guide.

v The third field is the full path name of the start command and options (if any).
The start command is used to start the proprietary protocol daemon on the host.

v The fourth field is the full path name of the stop command and options (if any).
The stop command stops the proprietary protocol daemon if the Tivoli NetView
program should stop or shut down. This command will be used only if the
proprietary protocol daemon was started using the start command as described
above.

v The fifth field is a comment field.

Editing the oid_to_protocol Registration File
The /usr/OV/conf/oid_to_protocol registration file is a configuration file for open
topology. The file contains a list of OIDs with text strings identifying the protocols
used with those objects. You can add OIDs and their associated protocols for
private use by editing the oid_to_protocol registration file. If you add entries to the
oid_to_protocol file, you should add corresponding entries to the snmp_fields file.
Refer to the Tivoli NetView for UNIX Programmer’s Guide for more information. To
add OIDs for public applications, contact the 10 Plus Association to request OIDs
for new protocols. Otherwise, conflicts can result among vendors.

Example of an oid_to_protocol File
Each entry in the oid_to_protocol file consists of the OID and the text string that
represents the protocol name. Following are examples of entries in the
oid_to_protocol file:
comment
“SNMP ifType”=1.3.6.1.2.1.2.2.1.3

${SNMP ifType}.1=“Other”
${SNMP ifType}.2=“Regular 1822”
${SNMP ifType}.3=“HDH 1822”
${SNMP ifType}.4=“DDN X.25”
${SNMP ifType}.5=“RFC 877 X.25”
${SNMP ifType}.6=“Ethernet CMSACD”

This could also be represented as:
comment

1.2.6.1.2.1.2.2.1.3.1=“Other”
1.2.6.1.2.1.2.2.1.3.2=“Regular 1822”
1.2.6.1.2.1.2.2.1.3.3=“HDH 1822”
1.2.6.1.2.1.2.2.1.3.4=“DDN X.25”
1.2.6.1.2.1.2.2.1.3.5=“RFC 877 X.25”
1.2.6.1.2.1.2.2.1.3.6=“Ethernet CMSACD”

Redirecting X Window Display
You can choose the host system where you want your X Window to be displayed.
To redirect your X Window display, follow these steps:

Chapter 5. Optional Configuration Tasks 53

1. Ensure the management system has permission to display windows on the host
you specified. If the management system does not have permission, use the
xhost command on the host system. To do so, on the host system, enter:
xhost + manager_hostname

Where manager_hostname is the host name for the management system. Refer
to the appropriate operating system documentation for more information about
the xhost command.

2. On the management system, set the X Window DISPLAY variable by entering
one of the following commands:

For... Enter...

Bourne or Korn Shell export DISPLAY=hostname:0.0

C Shell setenv DISPLAY hostname:0.0

Where hostname is the host name of the system and display number to which
you are redirecting the X Window display. The default display number is 0.0
(zero is the first display identified to the X-server).

Refer to the Tivoli NetView for UNIX Diagnosis Guide if you have problems with X
Window.

Using a Relational Database for Data Storage
If the Tivoli NetView database component is installed, you can configure the Tivoli
NetView program to use a relational database management system to store Tivoli
NetView data. For example, you can configure Tivoli NetView to store IP topology
data, trapd log data, and snmpCollect data in a relational database.

Tivoli NetView works with DB2/6000, Informix, Oracle, and Sybase. Refer to the
TME 10 Framework Reference manual for the latest supported databases.

Refer to the Tivoli NetView for UNIX Database Guide for information about how to
configure Tivoli NetView to store data in a relational database.

Configuring for Backup Manager
You can segment a large network by configuring a backup manager, which creates
individualized spheres of control for each management station. Multiple Tivoli
NetView programs can be used; each can be configured to cause minimal
duplication of network management traffic.

Refer to the Tivoli NetView for UNIX Administrator’s Guide for information about
configuring a backup manager.

Configuring SNMP Values
Select the Options –> SNMP Configuration from the menu bar to configure SNMP
values for SNMP communication. The SNMP Configuration menu item enables you
to change the default values for the following items:
v Agent community names
v Proxies
v Timeout intervals and number of attempts
v netmon status polling intervals

54 Configuration Guide

You can also configure different default values for a specific node or a group of
nodes. Configure a group of nodes by specifying an IP address global character (for
example, 15.122.*.*) or a SmartSet. The IP address global character is useful when
you want to configure different time-out values and number of retries for wide area
networks (WANs).

For information about using the SNMP Configuration operation, refer to the online
help or the Tivoli NetView for UNIX Administrator’s Guide. For specific technical
information, refer to the ovsnmp.conf man page.

Configuring Agent Community Names
A community name is a password that enables SNMP access to MIB values on an
agent. The Tivoli NetView program works with agent community names in the
following ways:

v By default, the manager’s SNMP-based network management operations send
the community name public in SNMP requests to agents.

v The manager’s SNMP-based network management operations look up agent
community names in the list shown in the SNMP Configuration dialog. The
Options –> SNMP Configuration... operation allows network management
operations to request MIB values from agents without requiring entry of a
community name. By default, the only community name entered is public.

The /usr/OV/conf/ovsnmp.conf database contains node names or IP addresses with
SNMP community names, timeout and retry intervals, and proxies. Changes you
make using the Options –> SNMP Configuration operation are saved in the
ovsnmp.conf database. If you are changing the community name on the manager
workstation, you must change it in both of the following places:

v /usr/OV/conf/ovsnmp.conf database (the Tivoli NetView program must
communicate with the SNMP agent)

v For AIX, /etc/snmpd.conf (the SNMP agent must use the new community name)

For Solaris, /etc/snmp/conf/snmpd.conf and /etc/snmp/conf/snmpdx.acl

When to Configure Agent Community Names
You need to configure agent community names under the following conditions:

v If your SNMP agents have a community name other than public, use the
Options –> SNMP Configuration operation to configure the management
system to use the proper community name for the agents.

v If you want to set MIB values on an agent, you may also need to configure the
SNMP agent to respond to SNMP SetRequests. Many SNMP agents do not
support SetRequests, but the ones that do generally require you to enter a
community name. How the community name is implemented and used depends
on the agent. For information about an agent’s community name, see the
documentation provided by the vendor of the agent.

For information about the SNMP agent, see the appropriate operating system
documentation.

If you plan to run APM, set up community names so that Tivoli NetView can do
SNMP Set and Get requests to all your Tivoli NetView MLM hosts.

Using Alternate Community Names
You can add a list of up to six SNMP community names, used by various devices in
your network, to the file /usr/OV/conf/communityNames.conf. When a netmon
query to a device fails, netmon will try each of the community names in this file, in

Chapter 5. Optional Configuration Tasks 55

|

|

an attempt to find the community name that works. An entry is then created for that
node name/community name combination in the ovsnmp.conf database, so it will be
used in future queries.

Normally, netmon will use the community name from the SNMP configuration. If a
name has not been configured for a device, it will use public, the default. If this
fails, netmon will use the list in communityNames.conf, but only under the following
circumstances:

1. On initial discovery for all nodes.

2. After SNMP timeouts for routers, netmon will try names from the list. Many
routers are configured so multiple interface IP addresses resolve to the same
name. This capability enables Tivoli NetView to successfully use any of the IP
addresses for SNMP queries.

3. When a Demand Poll fails, it will use the list.

4. A netmon configuration option enables netmon to use the alternate community
name list and update its internal cache during its configuration polling if
necessary.

Use this option judiciously because it slows down polling noticeably due to
timeouts for non-SNMP nodes. Ideally, you would want to use this option when
a large number of community strings have been changed. It is intended to be
used during a full configuration cycle (which is usually 24 hours) and then
manually turned off.

To enable this configuration option, select Configure –> Set options for
daemons... –> Set options for topology, discovery, and database daemons
–> Set options for netmon daemon in the Server Setup application. Turn on
the Always Use Alternate Community Names for all polling field in the
resulting dialog. You can access this application from the Tivoli NetView console
(Administer –> Server Setup) or from the command line by running the
/usr/OV/bin/serversetup command.

Authentication Failure
An authentication failure results when the community name, sent by a manager
system to an agent, is not valid. When an agent receives a community name that is
not valid, it can send an authentication failure trap to the Tivoli NetView program,
which logs authentication failure traps in its event log, /usr/OV/log/ovevent.log.

Configuring a Proxy Agent
You can use a proxy agent to provide SNMP access to nodes that do not support
SNMP. When you configure a proxy, the proxy agent receives the SNMP request
and forwards it to the requested node using a non-SNMP protocol. How the proxy
gets information from the target node depends on the target.

See the Tivoli NetView for UNIX Programmer’s Guide for information about
configuring a proxy agent.

Example of Using a Proxy: If you want to get information about a LAN
Manager/X client, which is a PC node, the information does not come directly from
the PC node, because the PC does not support SNMP. However, the LAN
Manager/X server supports SNMP and the server can communicate with the PC
node. In this example, you can configure the LAN Manager/X server to act as a
proxy for the target PC node. All requests to the target PC node are really sent to
the server.

56 Configuration Guide

Configuring netmon Polling Intervals
Select Options –> SNMP Configuration to change netmon polling intervals, such
as status polling interval, fixed polling interval, and configuration polling interval in
addition to other configuration parameters. The community name is also used by
netmon, and the timeout interval is used as an initial estimate.

To set polling and discovery on or off, select Options –> Topology/Status Polling
Intervals: IP... from the menu bar.

Configuring APM
The APM function is not automatically configured to run. To use APM, configure and
start the APM daemon through the Server Setup application. The APM daemon is
named C5d.

To configure the APM daemon, follow these steps:

1. Enter serversetup on the command line to access the Server Setup application.

2. Select Configure –> Set options for daemons –> Set options for Agent
Policy Manager daemon.

The Set options for Agent Policy Manager daemon menu is displayed.

3. Make the appropriate changes in the following fields:

v Full path name of log file

v Trace the execution of Agent Policy Manager?

v Full path name of trace file

v Number of minutes between daemon attempts

v Number of threshold events stored in history file

See the online help for more information about these fields.

4. Click OK.

The information is processed.

5. Click Close.

The dialog closes.

After configuring the C5d daemon, the daemon will be started automatically when
you start Tivoli NetView.

Forwarding Events to the Tivoli Enterprise Console
You can configure Tivoli NetView to forward events to the Tivoli Enterprise Console
event server. Using the Server Setup application, supply the host name on which
the Tivoli Enterprise Console resides and a Tivoli NetView event correlation rule.
See the TME 10 Enterprise Console Rule Builder’s Guide for detailed information
on rules. Then customize the Tivoli Enterprise Console event server to understand
the format of the events coming from Tivoli NetView.

Configuring Tivoli NetView to Forward Events
To configure Tivoli NetView to forward events to the Tivoli Enterprise Console,
follow these steps :

1. Enter serversetup on the command line to access the Server Setup application.

2. Select Configure –> Configure event forwarding to T/EC.

The Configuring event forwarding to T/EC dialog is displayed.

Chapter 5. Optional Configuration Tasks 57

3. Make the appropriate changes in the following fields:

v Forward events to Tivoli event server?

v Tivoli event server host name

v NetView rule name

See the online help for more information about these fields.

4. Click OK.

The information is processed.

The configuration information is stored in the /usr/OV/conf/tecint.conf file. If you
prefer, you can edit this file directly instead of using the Server Setup application.

The NetView rule name is an event correlation ruleset created with the Tivoli
NetView Ruleset Editor. The following ruleset samples are provided with the Tivoli
NetView kit:

Default.rs No events are forwarded.

Forwardall.rs All events are forwarded.

sampcorrIuId.rs Forwards an interface down trap if a node up trap is not
received for the same device within 10 minutes.

sampcorrNdNu.rs Forwards a node down trap if a node up trap is not received for
the same device within 10 minutes.

You may select one of these rulesets or create your own using the Tivoli NetView
Ruleset Editor. If you select the Forwardall.rs ruleset, it is strongly recommended
that you set up a filter inside the Tivoli Enterprise Console to reduce the number of
events received by the console.

Only events that are true for the specified event correlation rule are forwarded to
the Tivoli Enterprise Console event server. For information about the format of the
forwarded events, refer to the Tivoli NetView for UNIX Administrator’s Guide.

Customizing the Tivoli Enterprise Console Event Server
To customize the Tivoli Enterprise Console event server to understand the format of
events coming from Tivoli NetView, perform the following steps on the event server:

1. Copy the following files to a directory on the host running the Enterprise
Console:

usr/OV/conf/nvserverd.rls
usr/OV/conf/nvserverd.baroc

2. Create a rulebase for your environment. If a rulebase is already created, go to
Step 4 on page 59. To create a rulebase, enter the following command:
wcrtrb -d directory My_rb

Where directory specifies the directory in which you copied the nvserverd.rls file
and My_rb is the name of your rulebase.

3. Copy the contents of the Default rulebase into your newly created rulebase.
Enter the following command:
wcprb -cr -f Default My_rb

Where My_rb is the name of your rule base.

58 Configuration Guide

4. Import the event classes. Change to the directory containing the nvserverd.rls
and nvserverd.baroc files. Then enter the following command:
wimprbclass nvserverd.baroc My_rb.

Where My_rb is the name of your rulebase.

5. Import the rules.

Enter the following command:
wimprbrules nvserverd.rls My_rb

Where My_rb is the name of your rulebase.

6. Compile the rulebase by running the following command:
wcomprules My_rb

Where My_rb is the name of your rulebase.

7. Stop the event server. Enter the following command:
wstopesvr

8. Load the rulebase. Enter the following command:
wloadrb My_rb

Where My_rb is the name of your rulebase.

9. Restart the event server. Enter the following command:
wstartesvr

If events are not forwarded to the console after you perform all the configuration
tasks, enter the following command to see the raw data being received:
wtdumprl

Refer to the Tivoli Enterprise Console User’s Guide, Volume II for more information
about the commands used in this procedure.

Chapter 5. Optional Configuration Tasks 59

60 Configuration Guide

Chapter 6. Maintaining Tivoli NetView

To optimize the performance of the Tivoli NetView program, you might need to
perform various maintenance tasks. The following topics describe those tasks:
v “Maintaining Daemon and Process Logs”
v “Running Commands at Preset Times” on page 63
v “Maintaining Data Collection Files” on page 65
v “Deleting Unused Entries in the ovsuf File” on page 67
v “Removing Old Snapshots” on page 68
v “Cleaning Up the ORS Database” on page 69

Maintaining Daemon and Process Logs
Maintain the daemon and process logs to make sure they do not grow too large
and use up available file system space. A large log file can also adversely affect the
performance of the Events subsystem. To prevent these problems, use one of the
following methods:

v Periodically check the size of the log files and clear the contents as necessary.

See “Clearing Log and Trace Files Using the Server Setup Application” for steps
on using the Server Setup application to clear log and trace files.

v Create crontab entries to automatically clear log and trace files.

See “Running Commands at Preset Times” on page 63 for steps on using the
Server Setup application to set a crontab entry.

v Configure the trapd daemon to automatically archive trapd log data.

See “Maintaining the trapd.log File” for steps on configuring the trapd daemon.

v Check disk space using the Systems Performance Monitor (shpmon) application.

Refer to the Tivoli NetView for UNIX Administrator’s Guide for instructions.

Clearing Log and Trace Files Using the Server Setup Application
To clear the contents of the log and trace files, follow these steps:

1. Enter serversetup on the command line to access the Server Setup application.

2. Select Maintain –> Clear log, trace, or collector files.

The Clear log, trace, or collector files dialog is displayed.

3. Type the log or trace file you want to clear, or click the button beside the field
for a list of choices.

The selected file is displayed in the Log, trace, or collector file name field.

4. Click OK.

The information is processed, and the selected file is cleared.

5. Click Close.

The dialog closes.

Maintaining the trapd.log File
By default, the trapd daemon automatically clears the trapd.log file and moves the
data to the trapd.log.old file when the trapd.log file reaches a specified size, 4096
KB by default. You can gain additional control over the trapd.log data by configuring
the trapd daemon to run your own script or the trapd.log_Maint script when the
trapd.log file reaches the specified size. Root permissions are required to perform
this task.

61

The trapd.log_Maint script does the following processing of the data in the
trapd.log.old file, depending on the parameters you set for the trapd.log_Maint
script:

v Transfers the data to a relational database.

Refer to the Tivoli NetView for UNIX Database Guide for information about
transferring data to a relational database.

v Archives the data in the specified directory.

The data is archived in a file that includes a Julian date and time stamp in the file
name to indicate when the data was archived. For example, the file name
trapd.log.94215153001 indicates that this file was archived on August 3, 1994 at
3:30:01 p.m.

v Discards archived data that is older than the specified maximum age.

v Verifies that the maximum amount of disk space used to store archived trapd.log
data has not been exceeded. When the specified limit is reached, the oldest
trapd.log data is discarded.

Note: The archive maintenance actions do not affect trapd.log data stored in a
relational database.

To maintain the trapd.log file by configuring the trapd daemon, follow these steps:

1. Enter serversetup on the command line to access the Server Setup application.

2. Select Configure –> Set options for daemons –> Set options for event and
trap processing daemons –> Set options for trapd daemon.

The Set options for trapd daemon dialog as shown in Figure 11 is displayed.

3. Make the necessary changes to the entry fields:

v Maximum size of trapd.log file

v Full name of trapd log maintenance script

Enter the full path name of any script you want to use, or click the button
beside the field and select the trapd.log_Maint script from the list of choices.

4. Click OK.

v If you did not select the trapd.log_Maint script, the trapd daemon is
configured as specified. Skip to Step 6 on page 63.

Figure 11. Set Options for trapd Daemon Dialog

62 Configuration Guide

v If you selected the trapd.log_Maint script, make the necessary changes to the
trapd.log_Maint parameters that are displayed:
– Directory for storage of archived trapd.log files
– Maximum age of any archived trapd.log file
– Maximum total size of all archived trapd.log files
– Migrate data to SQL database

Refer to the online help for additional information about the entry fields.

5. Click OK.

6. Click Close.

The dialog closes.

Running Commands at Preset Times
If you have root permissions, you can use the Server Setup application to add
crontab entries to run shell commands at preset dates and times. Adding crontab
entries can help you organize and schedule various routine tasks.

Refer to the appropriate operating system documentation for information about the
crontab command and job scheduling.

The Tivoli NetView program provides several shell scripts for routine maintenance.
Using the Server Setup application, you can add a crontab entry for the following
shell scripts:

netmon.trace _Maint
Clears the netmon.trace file while keeping the last two versions of the file.
The netmon.trace file is moved to /usr/OV/log/netmon.trace.BAK1 and the
netmon.trace.BAK1 file is moved to /usr/OV/log/netmon.trace.BAK2.

snmpCol.trace_Maint
Clears the snmpCol.trace file while keeping the last two versions of the file.
The snmpCol.trace file is moved to /usr/OV/log/snmpCol.trace.BAK1 and
the snmpCol.trace.BAK1 file is moved to /usr/OV/log/snmpCol.trace.BAK2.

trapd.trace_Maint
Clears the trapd.trace file while keeping the last two versions of the file. The
trapd.trace file is moved to /usr/OV/log/trapd.trace.BAK1 and the
trapd.trace.BAK1 file is moved to /usr/OV/log/trapd.trace.BAK2.

You can add scripts or programs to those displayed when you add a crontab entry
by putting them in the /usr/OV/cron directory. Any executable file in the /usr/OV/cron
directory appears in the selection list of actions.

Attention: Because the /usr/OV/cron directory is part of the Tivoli NetView
program, if the Tivoli NetView program is removed from the system, all files in the
/usr/OV/cron directory may be lost. To avoid losing your executable files, either save
them through the Server Setup application before you remove the Tivoli NetView
program or create a symbolic link to the /usr/OV/cron directory. For example, the
following command causes the date command to appear in the list of actions:
ln -s /usr/bin/date /usr/OV/cron/date

Creating a crontab Entry
To set a crontab entry using the Server Setup application, follow these steps:

1. Access the Server Setup application by entering serversetup on the command
line.

Chapter 6. Maintaining Tivoli NetView 63

2. Select Maintain –> Manage crontab entries –> Add crontab entry.

The Add crontab entry dialog as show in Figure 12 is displayed.

3. Change the defaults in the entry fields.

4. Enter the name of the appropriate script in the Action field, or click the button
beside the field and choose a script from the list.

5. Click OK.

The information is processed, and a crontab entry is added.

6. Click Close.

The dialog closes.

To see or clear a previously set crontab, select List crontab entries or Remove
crontab entry from the Manage crontab entries menu.

Example of a Crontab Entry
The following is an example of a crontab entry that was set for the
netmon.trace_Maint script:
59 1 * * 1,3,5 /usr/OV/cron/netmon.trace_Maint

The netmon.trace_Maint script is executed at 1:59 a.m. every Monday, Wednesday,
and Friday.

Figure 12. Add crontab Entry Dialog

64 Configuration Guide

Maintaining Data Collection Files
Maintain the following data collection directories to ensure they do not use up all
available disk space:
v /usr/OV/databases/openview
v /usr/OV/databases/tralertd
v /usr/OV/databases/snmpCollect
v /usr/OV/log

These directories continue to grow as long as you are collecting data. To prevent
this problem, do one of the following:

v Create a crontab entry, using the Server Setup application to periodically remove
log, trace, and collector files.

See “Running Commands at Preset Times” on page 63 for information about how
to create a crontab entry.

v Configure the trapd daemon to automatically archive trapd log data.

See “Maintaining the trapd.log File” on page 61 for information about how to
configure the trapd daemon.

v Maintain the databases.

See “Maintaining the Databases” for information about how to maintain the
databases.

v For the snmpCollect directory only:

– Reduce the polling intervals.

Select Tools –> Data Collection & Thresholds: SNMP to decrease the
polling interval. If you only want to check thresholds, do not store the data.

– Remove the last 100 entries of a file in the snmpCollect directory using the
following commands:
snmpColDump -tTI /usr/OV/databases/snmpCollect/file | \

awk -F\t '{printf("%d\t%d\t%s\t%1g\n", $4, $5, $6, $3)}' | \
tail -100 > /tmp/save

snmpColDump -r /tmp/save /usr/OV/databases/snmpCollect/file

Where file is the name of the collection file in the snmpCollect directory.

C5 databases hold data used to map event frequency from APM submap icons.
The C5 directory contains one file for each event type per node.

v For the C5 directory only you can:

– Delete all these files safely if you do not need to map the traps.

– Decrease the number of lines kept via the daemon option.

– Delete the last n entries of each file.

– Delete files that have not been updated recently.

Maintaining the Databases
Databases continue to grow and consume file system space as long as you are
collecting data. This can adversely affect performance. To regain file system space,
use one or more of the following methods:

v Resolve inconsistencies between the IP topology database and the database
maintained by the ovwdb command for the graphical user interface. Resolving
inconsistencies can result in deleting unneeded objects from the IP topology
database.

See “Resolving Database Inconsistencies” on page 66 for more information.

Chapter 6. Maintaining Tivoli NetView 65

v Compress the IP topology database.

Compressing the IP topology database can be effective in regaining file system
space if a significant number of objects have been deleted from the IP topology
database, either through normal editing or by using the ovtopofix command.

See “Compressing the IP Topology Database” for more information.

v Clear the databases.

Because customization data is lost when you clear the databases, you should
clear the databases only if you were unable to regain file system space after
trying the preceding methods.

You can clear the following databases:
– tralertd
– snmpCollect
– topology

- ovwdb
- topo
- mapdb
- defmap
- gtmdb

See “Clearing Databases” on page 67 for more information.

Resolving Database Inconsistencies
You can use the Server Setup application to resolve inconsistencies between the IP
topology database and the database maintained by the ovwdb daemon for the
graphical user interface and to resolve inconsistencies between the map database
(mapdb) and the ovwdb database. The Server Setup application uses the ovtopofix
and ovmapcount commands, respectively, to resolve these database
inconsistencies.

To resolve database inconsistencies, with root permissions, follow these steps:

1. Exit all graphical user interfaces, including those on the client machines.

2. Enter serversetup on the command line to access the Server Setup application.

3. Select Maintain –> Resolve database inconsistencies.

The Resolve database inconsistencies dialog is displayed.

4. Changes the entry fields.

Refer to the online help for information about the entry fields.

5. Click OK.

A warning dialog is displayed.

6. Click OK.

7. Click Close.

The dialog closes.

Compressing the IP Topology Database
To compress the IP topology database using the Server Setup application, follow
these steps:

1. Enter serversetup on the command line to access the Server Setup application.

2. Select Maintain –> Compress the IP topology database.

The Compress the IP topology database dialog is displayed.

3. Select yes in the OK to continue? field.

4. Click OK.

A warning dialog is displayed.

66 Configuration Guide

5. Click OK.

The IP topology database is compressed by reading in all data from the IP
topology database, truncating the private IP topology database, and rewriting
the data.

6. Click Close.

The dialog closes.

Clearing Databases

Attention: When you clear the databases, customization data is lost.

To clear the contents of the databases, follow these steps:

1. Enter serversetup on the command line to access the Server Setup application.

2. Select Maintain –> Clear databases. Then, select one of the following:

v Select Clear object/topology/map databases, save customizations to
remove the data from the /usr/OV/databases/openview/topo directory, except
the APM definitions, SmartSet definitions, and master polling and discovery
settings.

v Select Clear object/topology/map databases, remove customizations to
remove all the data from the /usr/OV/databases/openview/topo directory.

v Select Clear tralertd database to remove all the files from the
/usr/OV/databases/tralertd directory.

v Select Clear snmpCollect database to remove all the files from the
/usr/OV/databases/snmpCollect.

A warning is displayed.

3. Click OK.

The selected database is cleared.

4. Click Close.

The dialog closes.

Note: When you use the Server Setup application to clear openview databases, all
the daemons are stopped but not restarted. When you use the Server Setup
application to restart map generation, all the daemons are stopped and
restarted.

Deleting Unused Entries in the ovsuf File
If you have root permissions, you can delete entries from the ovsuf file. The ovsuf
file contains the configuration information that prompts the startup process to start
the specified daemons. When you set options for the Tivoli NetView daemons,
entries are added to the ovsuf file or marked as unused. The entries that are
marked as unused begin with the number 1: in the ovsuf file. The 1: prevents the
startup process from starting this particular entry. You can delete these entries to
prevent the file from becoming too large. Use the Server Setup application to delete
unused entries (entries beginning with the 1:).

See “Deleting Entries in the ovsuf File Using the Server Setup Application” on
page 68 for the steps to accomplish this task.

Example of ovsuf File
Following is an example of the ovsuf file:

Chapter 6. Maintaining Tivoli NetView 67

1:ovwdb:/usr/OV/bin/ovwdb:OVs_YES_START::-O:OVs_WELL_BEHAVED:15:
0:trapd:/usr/OV/bin/trapd:OVs_YES_START:::OVs_WELL_BEHAVED::
0:pmd:/usr/OV/bin/pmd:OVs_YES_START::-Au:OVs_WELL_BEHAVED::

Deleting Entries in the ovsuf File Using the Server Setup Application
To delete unused entries in the ovsuf file, follow these steps:

1. Enter serversetup on the command line to access the Server Setup application.

2. Select Maintain –> Reset startup files –> Remove unused records from
ovsuf startup file.

A warning is displayed.

3. Click OK.

Unused records are deleted.

4. Click Close.

The dialog closes.

Removing Old Snapshots
To free memory and improve system performance, select File –> Map Snapshot
–> Delete from the Tivoli NetView graphical user interface menu bar. This option
enables you to remove snapshots you no longer need.

Alternatively, you can remove snapshots using commands or using the Server
Setup application.

Removing Snapshots Using the Command Line
To use commands to remove snapshots, follow these steps:

1. List all current maps by entering:
/usr/OV/bin/ovmapdump -l

This produces a list similar to the following example:
MAP PERMS CREATION TIME COMMENTS
default R/W Mon Apr 27 11:52:32 1992
Example Map 1 R/O Wed Apr 22 12:05:48 1991 example map
Example Map 2 None Tue Apr 28 14:37:49 1992

2. List all available snapshots for a given map by entering:
/usr/OV/bin/ovmapsnap -l -m mapname

Where mapname is the name of the map.

This produces a list similar to the following example:
NAME CREATION TIME COMMENTS
Testing Fri Apr 24 12:05:48 1992 testing ovmapsnap

3. Enter the following to delete a snapshot:
/usr/OV/bin/ovmapsnap -d -n “snapshot” -m mapname

If you want to automatically delete the oldest entry, use the following command to
set up a crontab entry:
/usr/OV/bin/ovmapsnap -d -f -m mapname

See the ovmapsnap man page for more information.

68 Configuration Guide

Removing Snapshots Using the Server Setup Application
To remove old snapshots using the Server Setup application, follow these steps:

1. Enter serversetup on the command line to access the Server Setup application.

2. Select Maintain –> Manage map snapshots –> Remove map snapshot.

The Remove map snapshot dialog is displayed.

3. In the Map Name field, type the name of the map or click the button beside the
field and select from the list.

4. In the Map Snapshot Name field, type the name of the map snapshot or click
the button beside the field to select the map snapshot name.

5. Click OK.

The information is processed, and the map snapshot is deleted.

6. Click Close.

The dialog closes.

Cleaning Up the ORS Database
When the orsd daemon removes entries from its ORS database, it does not
physically delete them, but marks the entries as having been deleted. The reason
for this is to avoid rewriting the database each time an entry is removed, making
the removal process faster.

However, keeping deleted entries in the database over a long period of time can
waste file space and reduce the performance rate of database inquiries. Therefore,
the orsd daemon is capable of removing the deleted entries from the database. This
is known as garbage collection.

By default, the orsd daemon will periodically remove the deleted entries. Or, if you
have root permissons, you can initiate garbage collection by using the ovorsutil -g
command.

You can use the Server Setup application to set options on the orsd daemon to
automatically do periodic garbage collections. You can set the following values:

v How often the orsd daemon checks to see if there are deleted entries in the
database.

v The percentage of garbage that must be in the database before a garbage
collection is performed.

See “Event and Trap Processing Daemons” on page 32 for information on setting
these orsd daemon options.

Chapter 6. Maintaining Tivoli NetView 69

70 Configuration Guide

Appendix A. Memory, Paging Space, Tuning, and Sizing
Considerations

This section contains information that will help you estimate the minimum amount of
memory that you will need for your Tivoli NetView server and Tivoli NetView client
systems. Because insufficient memory in your Tivoli NetView system will have a
significant negative impact on system performance, you should ensure that you
have adequate memory.

This section also describes how to determine the correct size and placement of
system paging space. It also offers tuning suggestions for Tivoli NetView. Finally, it
suggests ways to classify managed networks based on size and workload to aid in
planning.

Disclaimer: The use of this information or the implementation of any of these
techniques is a customer responsibility and depends on the customer’s ability to
evaluate and integrate them into the customer’s operational environment. While IBM
and Tivoli may have reviewed each item for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere.

Customers attempting to adapt these techniques to their own environments do so at
their own risk. Any performance data contained in this document was determined in
a controlled environment; therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should verify
the applicable data for their specific environment.

You should refer to the latest release notes for any updates to the information about
memory, tuning, and other such requirements. Be careful to allocate adequate
memory for your operating system configuration to accommodate Tivoli NetView as
well as any other applications that are running on the system.

Performance evaluations on all UNIX platforms yield similar results. Memory and
paging space requirements have been derived based on detailed AIX testing and
analysis. When using Solaris, some allowance should be made for small variations
in memory and paging space needs.

Estimating Memory Requirements
To estimate the memory requirements for Tivoli NetView, you should answer the
following questions:

v What is the size of the network that the Tivoli NetView server will discover? As
the size of the discovered network grows, so does the amount of memory that
Tivoli NetView requires. Tivoli NetView memory estimates are done on the basis
of objects, which are the internal representations of real-world items. How to
count objects is discussed in the sections that follow.

v How many concurrent Tivoli NetView operator graphical user interface sessions
will there be? Will these graphical user interface sessions be running on the
server, client or as a Web client? As the number of graphical user interface
operators increases, the memory needed to support them increases.

v What other applications do you plan to place on your Tivoli NetView server or
client system?

71

After you have determined the answer to each of these questions, use the memory
tables to identify how much memory you need for each system.

Determining the Size of the Network
When the Tivoli NetView program discovers a network, it represents the network
devices as objects. Objects are the internal representation of real-world items. The
key network objects are:

v IP Networks

v IP segments

v IP Nodes (for example IP-addressable workstations, routers, switches, servers,
IP-addressable hubs, and so on)

v IP Addressable interfaces (network adapters found in workstations and adapters
found in a router, for example)

To determine the number of objects contained in the topology database, use one of
the following methods:

1. Count the number of interfaces and multiply this number by 2.5.

2. If you have not installed the Tivoli NetView program, add the number of nodes,
IP-addressable interfaces, networks, routers (be sure to count each interface),
and segments. Obtain this number by actual counts or estimates. For a simple
estimate, count the nodes, routers and interfaces.

3. If you have Tivoli NetView installed, determine the number of actual objects by
using the /usr/OV/bin/ovtopodump -l command. The object count is the sum of
Networks + Segments + Nodes + Interfaces. Note that the count for Gateways
is not included.

Determining the Number of Operators
For an estimate of the number of operators required, determine the number of
graphical user interface sessions that will be placed on each Tivoli NetView server
and each Tivoli NetView client system.

Determining Memory Requirements for Additional Applications
To determine memory requirements for additional applications that you are running
with Tivoli NetView, consider not only the memory that each application requires,
but also consider the additional memory Tivoli NetView requires to support the
application.

The more information you have about an application and its use of Tivoli NetView
services, the more accurate this estimate will be. Often, the documentation for an
application does not specify its requirements on Tivoli NetView services. If this is
the case, add the general memory estimates given in the product documentation to
your estimate for Tivoli NetView memory. If you have knowledge of the application’s
use of Tivoli NetView services, the following text gives some insight to how to
improve on the memory estimate.

To estimate the amount of memory the application requires, determine the memory
that is required for the application’s processes based on those elements that are
significant for the application. Typically, an application has at least one daemon
process and a graphical user interface process for each operator. You should refer
to the appropriate vendor documentation for memory requirements for the
application you are using.

72 Configuration Guide

Next, add the additional memory that Tivoli NetView processes require to support
the application. Vendor applications can use Tivoli NetView APIs to increase the
amount of information that is stored in the Tivoli NetView databases. Increasing the
information in the databases increases the Tivoli NetView memory requirements.

For example, suppose that you have an application that relies on a user ID
discovery process to discover workstation user IDs with all their associated data
fields (such as, user name, user ID, host node name, office phone number, e-mail
address, manager name, manager’s e-mail address, and accounting number).
Suppose also that this application uses a topology process to store the information
in the Tivoli NetView ovwdb database, and it includes a graphical user interface
process for each operator, which displays a map of the user IDs and their
relationships (for example, user IDs on a host node). This application increases
Tivoli NetView’s memory requirements because there is an increase in objects in
the ovwdb object database. The user ID discovery process, the topology process,
and the map process for each operator graphical user interface session also add to
the total memory requirement.

Computing Memory Needs Based on Object Count
This section provides a simple table for estimating memory requirements on the
Tivoli NetView server or client. Using the object count you have established using
the methods above, and the number of graphical user interface sessions on either
the server or client system, scan the table to determine the memory needs.

Note: The memory sizing estimates in this table do not account for Web clients.
Refer to the release notes for the latest information.

Table 8. Tivoli NetView Server and Client Memory Sizing Estimates in Megabytes

Objects Server + 1 Client + 1 NextOpr

5000 128 64 21

10000 129 64 31

13000 153 64 38

15000 168 64 42

20000 207 69 53

25000 245 79 63

30000 284 90 74

35000 323 101 85

40000 361 111 95

45000 400 122 106

50000 438 132 116

55000 477 143 127

60000 516 154 138

65000 554 164 148

70000 593 175 159

75000 632 186 170

80000 670 196 180

85000 709 207 191

90000 747 217 201

Appendix A. Memory, Paging Space, Tuning, and Sizing 73

Table 8. Tivoli NetView Server and Client Memory Sizing Estimates in
Megabytes (continued)

Objects Server + 1 Client + 1 NextOpr

95000 786 228 212

100000 825 239 223

Example 1
A Tivoli NetView server is managing a network of 35,000 objects, with one local
operator and two additional operators using Telnet sessions to connect to the
server. For this network, the memory is estimated as 323 + 2(85) = 493 MB. In this
case, the approach is to round up to the next size of memory module (in this case
512 MB).

Note that this is a minimum estimate. It does not include other application memory
requirements. Furthermore, the user activity model is limited to simple viewing of
the topology display and events log.

Example 2
A second example is provided in Figure 13, illustrating primary and backup Tivoli
NetView servers with a total of five operators supported and one Tivoli NetView
client system supporting three operators. This example is for 50,000 objects.

Additional Memory Considerations
Here are additional considerations to keep in mind when you estimate memory
requirements:

v When using the memory table in the preceding section, remember that its
calculations represent a minimum estimate. It would be wise to add memory to
the estimate.

v Do not overlook the memory requirements of other applications on your Tivoli
NetView server.

v The estimates for operator memory are based on a minimal operator activity.
Other activities like graphical display of historical data (using xnmgraphs, which
require about 1 MB each) will add to the memory requirement.

v Plan for growth of your network that can be accommodated by the initial memory
placed in the system.

Tivoli NetView Server 1
438 MB

Backup

Primary

Tivoli NetView

3 Operators

Tivoli NetView Client 1
132 + 2(116) = 364 MB

Figure 13. Memory Sizing Formula Example (50,000 Object Network)

74 Configuration Guide

v Select memory in the largest DIMM units available for your system to allow for
memory expansion without wasting smaller sized DIMMs in the upgrade.

v Monitor memory and system resource utilization with a routine program of
performance data collection.

v The memory installed in X-stations is unrelated to the memory requirements for
the graphical user interface processes running on the Tivoli NetView server or
client, as described above. The X-station memory is used to store the X graphics
for the X-station display and processor.

v Experience from past releases of Tivoli NetView indicate that you need a
minimum of 24 MB of memory available in the X-station. Although you can use
less memory, 24 MB reduces the probability of memory contention problems. On
most X-stations, when memory contention occurs, X closes an application, which
usually causes the application to close. X-stations have not been used for some
time in these investigations.

v Using an X-emulator on a Windows/NT system as a Telnet operator has the
same memory costs on the Tivoli NetView server or client as using a UNIX
workstation for the same task.

v Background graphics in submaps can require a considerable amount of extra
memory; 5 to 10 MB is not uncommon.

Miscellaneous Considerations
Here are some miscellaneous considerations:

v Tivoli NetView can take advantage of multiple processors on a symmetric
multiprocessor (SMP) machine.

A SMP machine is a particularly good choice for a system that is in use as a
Tivoli NetView client and supporting multiple graphical user interface sessions. A
SMP system is also an excellent choice for the Tivoli NetView server because
such a system can more effectively service key components such as status
monitoring, trap processing, database service, and local graphical user interface
support processes.

v Consider a second, identical backup system for your Tivoli NetView server that
can provide quick take over if your primary Tivoli NetView server experiences
problems.

v An attractive choice for a system that could be used as a combination Tivoli
NetView client and operator system would be one of the entry-level,
dual-processor systems discussed in the release notes. Using an entry-level
system eliminates the expense of a separate operator machine that is used to
connect to a larger system supporting multiple graphical user interface sessions,
removes the need for a large client system, and provides for maximal workload
distribution.

v When defining the connection between the Tivoli NetView server and client, you
can use local or NFS-mounted connections. The NFS option provides the easiest
way to manage the consistency between the map view on the Tivoli NetView
server and the client. Note that for NFS supported client systems, the logon and
synchronization times for graphical user interface sessions will be longer when
compared to Telnet sessions to the Tivoli NetView server

v Longer synchronization times are required for transferring topology information
(often a substantial amount of data) from the Tivoli NetView server to the client.
For this reason, you should not place the client system on a slow network
connection to the Tivoli NetView server.

v Select the largest L2 cache option available for the CPU.

Appendix A. Memory, Paging Space, Tuning, and Sizing 75

|
|
|
|
|
|
|

Paging Space Guidelines
Paging space requirements are unique for each system, dependent upon such
variables as which applications are running and the number of active users.

Remember the following guidelines when you evaluate how much paging space you
need.

v Some systems with large amounts of memory do not need large amounts of
paging space. If a machine is in a persistent (data files) storage environment
(that is, the machine has a few small programs and a large amount of data in
files that reside in the memory-based disk cache), you might not require paging
space equal to the amount of memory. The files in the memory-based disk cache
will not be paged out to paging space.

v Too much paging space is not necessarily good because unused paging space is
not available for other uses. However, not having enough paging space can
cause problems on your system. Strive to achieve balance between these two
opposing goals.

v For systems with 256 MB of memory or less, a good starting point to determine
the amount of paging space is to multiply the amount of memory by 2. To
determine the amount of paging space required for systems with more than 256
MB of memory, use the following formula:
Paging Space (in MB) = 512 + (memory - 256) * 1.25

For example:

If memory (in MB) is... Paging space (in MB) should be at least...

64 128–192

128 256

256 512

512 832

1024 1472

Creating or Enlarging Paging Space
Follow these guidelines when creating or enlarging the amount of paging space:

v Do not place more than one paging space logical volume on a physical volume.

All processes that are started during the boot process are allocated paging space
on the default paging space logical volume (hd6).

After the additional paging space logical volumes are activated, paging space is
allocated in a series in 4 KB blocks, selecting the next active page space using a
serial sequential algorithm.

If you have paging space on multiple physical volumes and you put more than
one paging space on a physical volume, you will no longer be spreading your
paging activity evenly over the multiple physical volumes. That is, the physical
volumes with more than one paging space will have more total paging activity.

v Do not extend a paging space logical volume onto multiple physical volumes.

If a paging space logical volume is spread over multiple physical volumes, you
will not be spreading your paging activity across all of your physical volumes. If
you want to allocate space for paging on a physical volume that does not already
have a paging space logical volume, create a new paging space logical volume
on that physical volume.

76 Configuration Guide

v Make each paging space logical volume approximately equal in size.

If you have paging spaces of different sizes, when the smaller ones become full,
you will no longer be spreading your paging activity across all of your physical
volumes.

v Avoid putting a paging space logical volume on the same physical volume as a
heavily active logical volume, such as that used by a database.

v It is not necessary to put a paging space logical volume on each physical
volume.

v For best system performance, place paging space logical volumes on physical
volumes that are each attached to a different disk controller. Spread the paging
activity across as many disk controllers as possible.

v If you have several page spaces, each on a different disk drive, you must ensure
that you deactivate any active paging space on a disk drive before removing the
disk drive. If a disk drive containing an active paging space logical volume is
removed from the system, the system will fail.

Indicators That More Paging Space is Required
You might need more paging space for any of the following reasons:

v If processes die due to having received signal 33 (SIGDANGER)

To verify this, use the errpt command to view the system error log entries. When
the system sends a signal 33, it indicates that the system has only about 2 MB of
free page space. Shortly after the system sends a signal 33, the system starts
killing the most current processes.

v If any of the following messages are displayed:
INIT: Paging space is low

ksh: cannot fork no swap space

Not enough memory

Fork function failed

fork () system call failed

Unable to fork, too many processes

Fork failure - not enough memory available

Fork function not allowed. Not enough memory available.

Cannot fork: Not enough space

signal 33 received

SIGDANGER received

v If the average of the percent used, or the percent used, is greater than 80
percent

The iostat, vmstat, and lsps commands can help you determine if you want to
make changes regarding paging space logical volumes.

Appendix A. Memory, Paging Space, Tuning, and Sizing 77

Tuning Tivoli NetView
This section contains miscellaneous tuning suggestions. In a normal environment,
Tivoli NetView is configured for a good balance of performance and information. For
very large networks, or in an environment where it is critical to achieve optimal
performance, follow the guidelines in this section.

v Filtering traps from display on the Event Display is effective in reducing CPU
consumption. While filters do add cost to the processing of traps (the trap must
be checked to see if the filter should apply), the cost of checking the filter is far
less than the cost of displaying the trap on the Event Display. Carefully review
the traps presented at the Event Display and develop filters to reduce the display
of traps that you determine are not of interest to your environment.

v There is no performance difference between the use of the card and row display
option on the Event Display.

v The cost of trap transmissions to the Tivoli Event Console is minimal. Define
rules for transmission of traps from Tivoli NetView to the Tivoli Enterprise
Console as the trap processing and transmission capacity of Tivoli NetView is
higher than the Tivoli Enterprise Console reception and processing capacity.

v Ensure that trap definitions provided by other applications placed on your Tivoli
NetView server are properly defined to Tivoli NetView. The cost of determining
that a trap is undefined is substantially higher than the identification of a known
trap.

v Set the cache size for the Tivoli NetView ovwdb daemon to be greater than the
object count. Use the /usr/OV/bin/ovobjprint -S command to determine the
number of objects in the database. Increase the ovwdb cache size using the
Server Setup application (Configure –> Set options for daemons –> Set
options for topology, discovery, and database daemons –> Set options for
ovwdb daemon).

v For environments with high trap rates (more than 5 per second), increase the
Tivoli NetView trapd queue size to 15,000. Values from 500 to 50,000 have been
confirmed to be stable. Large queues prevent trap loss, but can buffer a lot of
traps during a network storm that must be processed. To increase the trapd
queue size, use the Server Setup application (Configure –> Set options for
daemons –> Set options for event and trap processing daemons –> Set
options for trapd daemon).

v Displaying large numbers of events can be CPU intensive. For operators who do
not require the Event Display all the time, Tivoli suggests not starting it up by
default. To disable initial startup of the Event Display, edit the
/usr/OV/registration/$LANG/ovsnmp/nvevents file and remove the -Initial flag from
the following line:
Command -Shared -Initial "$[nvevents:-/usr/OV/bin/nvevents]"

v SmartSets provide a powerful tool for gathering resources with some common
characteristic into a group. They can provide a way to segment different
populations of resources for such values as different monitor interval and time
out values. SmartSets extend the initialization period for the user interface (the
synchronization time) and Tivoli NetView startup. However, this is usually not a
factor as the number of SmartSets is small or the number of items in a SmartSet
is small. Each Mid-Level Manager will result in a SmartSet (if you are using
APM).

v Consider these DNS guidelines.

– Tivoli NetView performs many DNS lookup calls.

– Keep the size of your /etc/host file small.

78 Configuration Guide

– Consider the placement of the DNS relative to Tivoli NetView. Place the
primary DNS near Tivoli NetView in the network.

– Consider using a secondary DNS on the Tivoli NetView server. Experience
indicates that a secondary DNS on the Tivoli NetView server has a small CPU
cost.

v Use the following guidelines for efficient seed file discovery:

– Periodically run ovtopofix to clean out obselete references.

– Use IP addresses in your seed file.

– Consider a stopper address as the last entry to stop discovery.

– Consider customization of /usr/OV/conf/oid_to_type. For example, designate
DEFAULT_IP: : :U as last line of /usr/OV/conf/oid_to_type to set nodes not
running SNMP as unmanaged and Tivoli NetView will not deal with them
again.

– Work to perfect the seed file. Discover the network, adjust the seed file, delete
the database, and then try the discovery again. Seed files are an excellent
technique to bound discovery (saves memory).

– Note that large seed files can add to the Tivoli NetView startup time.

v To increase the status monitoring response time for large networks, consider
increasing the netmon ping queue size to a maximum of 32 (the default is 16). To
increase the ping queue size:

1. Add the -q32 flag to the /usr/OV/lrf/netmon.lrf file.

2. Type the following commands:
/usr/OV/bin/ovstop netmon
/usr/OV/bin/ovaddobj /usr/OV/lrf/netmon.lrf
/usr/OV/bin/ovstart netmon

To accelerate the initial SNMP Configuration Update and Discovery for large
networks, you might also consider increasing the netmon SNMP queue size to a
maximum of 32 (the default is 16).

Be aware that increasing the SNMP queue size will significantly increase the
SNMP traffic on your network and system. This can degrade the performance of
your management station and network. Monitor your system and network after
increasing this queue to determine the optimal value for your environment.

To increase the SNMP queue size:

1. Add the -Qnum num flag (where num is the queue size) to the
/usr/OV/lrf/netmon.lrf file.

2. Type the following commands:
/usr/OV/bin/ovstop netmon
/usr/OV/bin/ovaddobj /usr/OV/lrf/netmon.lrf
/usr/OV/bin/ovstart netmon

Network Sizing Guidelines
This section contains general definitions of networks based on size and workload.
These definitions are based on laboratory performance studies and customer
observations.

The information in this section should be considered a general guideline to help you
select systems with appropriate capacities. The guidelines assume that the default
Tivoli NetView database is in use, that you have used the tuning described above,
and that Tivoli NetView is the only significant application on the system. They

Appendix A. Memory, Paging Space, Tuning, and Sizing 79

should not be taken as a performance guarantee.

Table 9. Characteristics of Sample Networks Based on Size

Network Size Characteristics

Small network v 1000 to 20,000 objects
v 1 or 2 Telnet operators
v Status monitoring with 5 to15-minute polling
v Few or no SNMP collections
v No other applications on the system
v 5 to 10 traps per minute

This environment has excellent network response times (4–10
MS).

Medium network v Around 30,000 objects
v 2 or 3 Telnet operators
v 1 or 2 Web operators
v Status monitoring five-minute polling
v Some SNMP collections
v No other applications
v 20 to 30 traps per minute
v Approximately 300 routers

This network has good network response times (10–70 MS).

Large network v More than 40,000 objects
v 3,000 to 4,000 routers
v 3 to 10 Telnet operators
v 1 to 5 Web operators
v A large system used as the Tivoli NetView client to support most

of the operators
v Backup Tivoli NetView server present
v Status monitoring at 5, 15, and 30–minute intervals with polling

set up for three populations
v SNMP collections at 15 minute intervals to 4000 nodes

requesting one MIB value
v 1 to 2 traps per second

This network has good response times. Deployment of Mid-Level
Managers could be considered for the future of this network.

General recommendations include:

v Fastest possible SMP machine (2-4 CPUs) for your Tivoli NetView server or Tivoli
NetView client machines

v PCI network adapter card

v Multiple hard disks

v Adequate memory

v Design for introduction of distributed components (such as Mid-Level Manager,
client/server, operator types, and placement)

v Backup the Tivoli NetView server

Some additional sizing information is available in the operating-system specific
appendices of this book. Contact your Tivoli support representative for suggestions
about a suitable machine configuration for your environment.

80 Configuration Guide

Appendix B. Additional Notes for AIX

This appendix contains additional information for users of Tivoli NetView on an AIX
platform.

Mounting a CD-ROM on AIX
Following is additional information about mounting a CD-ROM on AIX:

1. Create a CD-ROM file system. If this has already been done, proceed to step 2.
To create a CD-ROM file system:

a. Start SMIT using the following command:
smit crfs

b. Select Add a CDROM File System from the SMIT menu. Complete the
fields in this dialog.

The DEVICE Name is likely to be cd0 (check for the file /dev/cd0; if it does
not exist, determine the name of your cdrom device).

A suggested name for MOUNT POINT is /cdrom. Ensure that the directory
specified exists and that it is an empty directory.

c. Click OK to add the CD-ROM file system and then exit from smit.

2. Insert the CD-ROM in the drive and execute the following command:
mount /cdrom

Where /cdrom is the CD-ROM file system.

Note: To unmount a CD-ROM on AIX, execute the command:
unmount /cdrom

High Availability Cluster Multi-Processing Servers on AIX
Tivoli NetView can be used with High Availability Cluster Multi-Processing (HACMP)
servers with the following recommendations:

v Put /usr/OV on the fail-safe file system.

v Have both IP and MAC address takeover.

v Install Tivoli NetView on both machines with the hostname set to the one
corresponding to the shared IP address.

Even though /usr/OV will be overwritten, this is necessary for the surrounding links
and modifications to the nonshared system files/directories to occur. Because
/usr/OV is shared, a backup of /usr/OV should be made prior to deinstalling, so that
it can be restored for the deinstallation of the other machine to occur without a
problem.

Use the following startup/shutdown scripts:
start_netview script:

Mount shared directory
mount /usr/OV
Source in Tivoli info for appropriate Library paths
. /etc/Tivoli/setup_env.sh
Set hostname to shared IP addresses hostname
hostname hacmp5
Export subdirectories needed by client
mknfsexp -d ′/usr/OV/conf' -t ′ro' -r \

81

′hacmp77.net.com' -N
mknfsexp -d ′/usr/OV/databases/snmpCollect' -t ′ro'\
-r ′hacmp77.net.com' -N mknfsexp -d
′/usr/OV/databases/openview/mapdb' -t ′rw' -r \
′hacmp77.net.com' -N mknfsexp -d
′/usr/OV/databases/openview/defmap' -t ′rw' -r \
′hacmp77.net.com' -N
Set display and start netview
Note: If it is to be used as a GUI-less server then
the DISPLAY doesn't need to be set and /etc/netnmrc
should be run.
export DISPLAY=:0.0
/usr/OV/bin/netview
End of script

stop_netview script:

Stop daemons/windows so that the /usr/OV can be unmounted
/usr/OV/bin/nv6000_smit stopall forceall
/usr/OV/bin/nv6000_smit APPLCLEANUP ovw_binary nvauth nvsec_admin
/usr/OV/bin/nettl -stop >/dev/null 2>&1
/usr/OV/bin/ovstop nvsecd >/dev/null 2>&1
Remove /usr/OV subdirectories from NFS exports list
rmnfsexp -d ′/usr/OV/conf' -N
rmnfsexp -d ′/usr/OV/databases/snmpCollect' -N
rmnfsexp -d ′/usr/OV/databases/openview/mapdb' -N
rmnfsexp -d ′/usr/OV/databases/openview/defmap' -N
Unmount /usr/OV
cd /
umount /usr/OV
End of script

If client/server is to be used, it is important to set the Major Number for the shared
volume group consistently. For information about about the network file system
(NFS) and HACMP, refer to the IBM AIX High Availability Cluster
Multi-Processing/6000 Administrator’s Guide.

Also, when configuring the client, you should use the hostname of the shared IP
address for the server.

Tuning Suggestions for AIX Systems
This section describes miscellaneous AIX tuning recommendations to improve your
performance.

v Be aware of these changes to the AIX buffers for network adapter cards:

– AIX 4.3.1 provides larger buffers over past AIX levels.

– PCI adapters allow larger buffers than MCA adapters.

Tivoli recommends that you set transmit and receive buffers for your network
adapter card as large as allowed for your Tivoli NetView server and Tivoli
NetView client systems. Follow these steps to increase the size of these buffers.
This example assumes that the adapter is active and for the tr0 token ring.

1. Enter ifconfig tr0 detach.

2. Make the adjustments using smit. The smit fast path commands are smit
tradap or smit ethernet.

3. Enter ifconfig tr0 hostname up.

v The TurboDatabase speed option has been shown to reduce I/Os and improve
network discovery response times. Refer to “Appendix D. NDBM Database
Enhancements in Tivoli NetView Version 5.1 (AIX only)” on page 89 for more
information on this utility.

82 Configuration Guide

v Increase the Processes per user to 1024. Use the smit utility to make this
change.

v The ARP Cache is used to translate IP addresses to hardware addresses on the
same subnet. A good example is the default router address. The default (175 for
AIX Version 4) is usually acceptable.

– Use arp -an | wc -l to check cache usage counts.

– Use no -a to view the arptab_nb (number of “buckets”) and arptab_bsiz
(size of “buckets”) settings.

The cache size is equal to the product for these two values. Change with the
no -o arptab_nb=293 (prime #) command, add this change to the /etc/rc.net
file (careful with placement), and confirm that the size is adequate.

– The ARP cache is less interesting in routed networks.

– The ARP cache is more interesting in switched networks.

Recommended AIX Machine Types
Following are some recommended machine types, based on the size of your
network.

Table 10. Sample Machine Types

System Size Machine Type

For a small network v RISC/6000 43P-240 dual 233 MHz
v RISC/6000 F50 dual 332 MHz

For a medium
network

v RISC/6000 F50 4-way 332 MHz

For a large network v Multiple systems
v Server or client: RISC/6000 F50 or H50 4-way 332 MHz
v Combination client and single operator: RISC/6000 43P- 260 dual

200 MHz
v RISC/6000 H70 4-way 340 MHz

Refer to Table 9 on page 80 for definitions of small, medium, and large networks.

Individual machine models are frequently changed and updated by hardware
manufacturers, the suggested machines were current at the time this material was
prepared and should be considered as a class of systems with documented (using
industry standard benchmarks) performance capabilities.

Tuning AIX for Tivoli NetView
For information about AIX tuning and Tivoli NetView, refer to “Appendix A. Memory,
Paging Space, Tuning, and Sizing Considerations” on page 71.

Appendix B. Additional Notes for AIX 83

84 Configuration Guide

Appendix C. Saving Files and Installation Entries

This appendix provides information about installation entries and saving files.

Saving Files
This section provides information about saving data files.

Saving Files Using the Tivoli Desktop (Version 5 and 6)
To save your Version 5.0, Version 5.1, or Version 6.0 data files using the Tivoli
desktop, follow these steps:

1. Enter tivoli at the command line to access the Tivoli desktop.

2. For Version 5.0 or Version 5.1, double-click the policy region that contains the
appropriate Tivoli NetView server. The Policy Region window is displayed.

3. Click and hold down the right mouse button on the server icon to display the
menu.

4. Click Maintain –> Backup Selective Data.

The Backup Selective Data dialog box is displayed.

5. Complete the following fields in the dialog box:
v Directories to save:
v Volume group for backup filesystem:
v Replace existing backup data?

Refer to the online help for information about these fields. See “Appendix E.
Files That Migrate” on page 95 for descriptions of the categories of files that you
can save.

Note: If you have installed the Tivoli NetView Framework 5.x to 6.0 patch, you are
not able to back up your current Tivoli NetView Version 5.x installation using
the Tivoli Desktop. Use the Tivoli NetView migration script to back up your
data. See “Saving Files Using the Migration Script” on page 86 for
information on how to use this script.

Saving Files Using Tivoli NetView Server Setup (Version 6 or Higher)
To save your data files using the Tivoli NetView Server Setup application, follow
these steps:

1. Enter serversetup from the command line.

2. Click Maintain –> Backup Selective Data. The Backup Selective Data dialog
box is displayed.

3. Complete the following information in the fields:
v Directories to save
v Volume group for backup filesystem:
v Replace existing backup data?

Refer to the online help for information about these fields. See “Appendix E.
Files That Migrate” on page 95 for descriptions of the categories of files that you
can save.

Note: To save files on a client, enter the clientsetup command in Step 1 above,
and then follow Steps 2-3.

85

|

|

|

|
|

|

|
|

|
|

|

|

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|

|
|

|
|
|
|

|
|
|

|
|

Saving Files Using the Migration Script
To save data files using the migration script, follow these steps:

1. Exit the graphical user interface if it is running.

2. Stop all the daemons.

3. Run the migration script by entering the following command:
/usr/OV/install/tools/nvp.vXrY save

Where nvp.vXrY is the script that corresponds to the version that you currently
have installed, for example, nvp.v6r0. You will be prompted for the categories of
the files you want to backup. See “Appendix E. Files That Migrate” on page 95
for descriptions of the categories.

To backup all data from the Version 6.0 installation without being prompted for
which categories to backup, use the following command:
/usr/OV/install/tools/nvp.v6r0 save -p '/usr/OV/ALL' -vg 'none'

Note: For a client, the migration script is called nvpc.vXrY.

Installation Entries
The installation procedure adds the following entries for Tivoli NetView processes to
the following files. These entries should not be changed.

Table 11. Installation Entries

Entry Process File

/etc/netnmrc Background daemons /etc/rc.tcpip (AIX only)

actionsvr 1670/tcp actionsvr /etc/services

C5_server 1668/tcp C5d /etc/services

cmot_manager 163/tcp pmd /etc/services

cmot_manager 163/udp pmd /etc/services

cmot_agent 164/tcp pmd /etc/services

cmot_agent 164/udp pmd /etc/services

gtmd 2112/tcp gtmd /etc/services

mgragentd 1.3.6.1.4.1.2.6.4.6
nv6000

mgragentd /etc/snmpd.peer (AIX only)

nvcold 1664/tcp nvcold /etc/services

nvcorrd 1666/tcp nvcorrd /etc/services

nvlockd 1669/tcp nvlockd /etc/services

nvpagerd 1671/tcp nvpagerd /etc/services

nvsecd 1663/tcp nvsecd /etc/services

nvsecltd 1667/tcp nvsecltd /etc/services

nvtrapd-trap 162/tcp trapd /etc/services

nvtrapd-trap 162/udp trapd /etc/services

nvtrapd-client 1661/tcp trapd /etc/services

86 Configuration Guide

|

|

|

|

|

|

|
|
|
|

|
|

|

|

|

Table 11. Installation Entries (continued)

Entry Process File

otmd 1672/tcp otmd /etc/services

ovtopmd 8888/tcp ovtopmd /etc/services

ovwdb 9999/tcp ovwdb /etc/services

pmd 2113/tcp pmd /etc/services

smux 1.3.6.1.4.1.2.6.4.6 nv6000 mgragentd /etc/snmpd.conf (AIX only)

snmp 161/udp TCP/IP Agent /etc/services

smux 1.3.6.1.4.1.2.6.4.1 nv6000 trapgend /etc/snmpd.conf (AIX only)

snmp 161/udp TCP/IP agent (snmpd
process)

/etc/services

trapgend 1.3.6.1.4.1.2.6.4.1
nv6000

trapgend /etc/snmpd.peers (AIX
only)

xxmd 3113/tcp gtmd /etc/services

Appendix C. Saving Files and Installation Entries 87

88 Configuration Guide

Appendix D. NDBM Database Enhancements in Tivoli NetView
Version 5.1 (AIX only)

Improvements were made in the Version 5.1 release of Tivoli NetView to address
these problems on the AIX platform:

v Some large routers can cause Tivoli NetView to create fields that are too large to
fit into the object database.

v Some of the database files are difficult to back up because they appear to be
much larger than their actual data content. (for example, the sparse file system
problem).

v High CPU time is sometimes required for ovwdb.

v ovtopmd and netmon speed is sometimes unacceptable.

v ipmap and xxmap synchronization time is long.

To address these problems, two enhancements were made. First, the code in the
ovwdb API code for the OVwDbFieldNameToFieldId() call will now cache field IDs
locally. This should improve client/server performance and is transparent to the
calling program. And second, the NDBM component, which is the basis for the
object, topology, and map databases, was enhanced in several ways. The
remainder of this appendix will describe these changes.

NDBM Component Overview
Each of the three main Tivoli NetView databases is a collection of several NDBM
databases. NBDM is an expandable keyed hash table with the data residing on the
disk. Each NDBM database is comprised of two files:

v A directory file

v A page file

The directory file has an extension of .dir and contains information that NDBM uses
to index into the page file.

The page file actually contains the key and the data. The file is divided into pages
where the data (key and value) is stored. The page number is calculated from the
key and the bits in the directory file. Each page is currently 8 KB long.

Two optional files are defined for each NDBM database.

v A config file

v An overflow file

The config file contains parameters for NDBM and determines what new functions
will be applied to this database. The file is created by the dbmcompress utility and
is not intended to be modified in an editor. If the config file does not exist, NDBM
uses defaults that match the old NDBM processing, so that, even with the new
code, existing databases continue to work as usual.

The overflow file contains data for large values. This will enable data larger than 8
KB to be stored in the database.

These new files provide the following capabilities:

89

v Large values can be written to the overflow file rather than the page file. This has
two benefits. First, it allows values larger than 8 KB to be stored in the database.
Second, it greatly reduces the sparse filesystem problem.

v New hashing algorithms exist to help group related data items into the same area
of the disk. This can reduce disk writes for database updates.

v A new option to start permanently buffering database updates can reduce both
disk read and writes. For some databases, buffering will provide a significant
performance boost only when combined with the new hashing algorithms.

v If the environment variable NV6K_NDBM_DEBUG is turned on, then all
database activity will be logged to a .trc file. This can be useful for debugging
and occasionally for tuning.

v With the dbmcompress utility, some database problems, can be corrected. This
utility cannot resolve inconsistencies between databases, but it can remove
NULL values and inaccessible data from an individual NDBM database.

New NDBM Utilities
Three NDBM utilities provide the capabilities described in the previous section:
dbmcompress, dbmlist, and nvTurboDatabase. These utilities reside in the
/usr/OV/service directory.

The dbmcompress Utility
The dbmcompress utility compresses an individual NDBM database. Since it
compresses one database at a low level, it can complete its compression much
faster than older database compression utilities. Compressing the value_info
achieves most of the benefits of the ovwdbdmap -c command in about one-fifth the
time. The dbmcompress utility is also used to transform databases. The
transformation creates a config file and a database based on command line options
to dbmcompress.

The dbmcompress command has the following syntax:
dbmcompress [-o -s -a -h d|o|n|r -m -b -v] databasename

where:

–o Means that new database will use an overflow file for large items.

–s n Will overflow objects larger than n.

–a n Will append items in the overflow until file size reaches n.

–h d|o|n|r
Determines the hashing algorithm for the new database, where d = default,
o=group by oid, n=group by name, r=group by oid (method 2).

–m n Allows the hashing to optimize for n megabytes of data for hashing
algorithms other than d.

–b n Will cause the database to always buffer n pages.

–v Indicates verbose flag.

The dbmlist Utility
The dbmlist utility collects important information such as the configuration of a
database, the count of items in the database, and the total size of the database.

The syntax for the dbmlist command is:

90 Configuration Guide

dbmlist [-belcnsSh -i 'val' -j 'val'] databasename

where:

–b Prints block information.

–e Prints empty blocks.

–l Prints sizes of keys and values.

–c Counts the objects.

–n Does not print the object data.

–s Prints the total size of the the data and keys.

–S Suppresses database error messages.

–h Prints the key in hexadecimal.

–i ’val’
Prints only keys where the first word matches ’val’.

–j ’val’
Prints only keys where the second word matches ’val’.

The nvTurboDatabase Script
The nvTurboDatabase utility processes all appropriate database files for a customer
and runs dbmcompress to transform and compress the databases. Because some
NDBM database files must trade off between speed and database size, this script
has a parameter that allows you to optimize for either speed or space.

The syntax for nvTurboDatabase is:
nvTurboDatabase [speed | space]

Implementation
To implement database improvements, consider the following:

v “Improving Database Performance without NDBM Enhancements”

v “Migration Options” on page 92

v “Possible Migration Strategies” on page 92

Improving Database Performance without NDBM Enhancements
Before describing strategies for implementing the new NDBM enhancements, it is
important to look at improving the operation of the key NDBM databases:

Table 12. Methods for Improving Database Performance

Database Methods to Improve Performance

nodeinfo ifinfo The netmon and the topology daemons generally update a node and
interface twice during such operations as configuration checking.
Buffering can reduce the number of disk writes by about half.

topoinfo netifno
segnifo

The count fields are the most often updated fields in these databases.
Buffering these fields with a small number of buffers will reduce
unnecessary disk I/O.

Appendix D. NDBM Database Enhancements 91

Table 12. Methods for Improving Database Performance (continued)

Database Methods to Improve Performance

obj_info Hashing -d o will help group the data for one object into the same
page. Buffering with a count of two should also be used here to fully
realize the benefit of grouping the object data. Two problems are
addressed with these changes:

1. The sparse file problems - the solution is to use an overflow file

2. Performance

The default hashing algorithm places the different fields for any
given object into several different areas (pages) of the .pag file.
Performance will be greatly improved if the hashing is changed to
o; -h o hashing tries to keep the fields for an object together in a
small group of pages. When combined with buffering, this produces
significant savings in ovwdb performance. The buffering count
should be set to at least 3, (that is, -b 3).

name_inf This database has a problem of storing different names for any given
object in different pages. Hashing -d n will try to group the names for
an object into the same page. This must also be used with buffering
but a buffer value of one or two should be sufficient.

syminfo This database will benefit from -h o hashing because symbols tend to
be updated in groups with similar oids. Buffering with a count of two
will also help this database run faster.

objinfo Buffering will help this database to run faster

Migration Options
Following are migration strategies that you may want to pursue with regard to the
NDBM enhancements:

1. Remaining with traditional NDBM processing

No migration step are required.

2. Moving from traditional NDBM processing to enhanced NDBM processing

This can be done on a database-by-database basis. For example, you could
use traditional NDBM processing for all databases but for value_info, and use
an overflow file for it. To migrate, run the dbmcompress program with new
options set.

3. Moving from enhanced NDBM processing back to traditional NDBM processing

This can be accomplished by running the dbmcompress program on a database
with no options specified.

Possible Migration Strategies
Before implementing the NDBM enhancements in a production environment, ensure
that there are procedures for regular backups in place. When making backup copies
with NetView utilities, move the *.BAK files out of the /usr/OV/databases directory
tree. Then, consider the following:

1. Minimizing space

Run the nvTurboDatabase space script to limit sparse file system problems.

2. Maximizing performance (speed)

Run the nvTurboDatabase speed script to maximize speed. This solution will
work if your database is small enough or if your disk is large enough to allow
the value_info.pag file to be backed up.

3. A combination of minimizing space and maximizing speed

92 Configuration Guide

For normal operation, use nvTurboDatabase speed to optimize speed. For
backups, perform the following steps:

a. Run the nvTurboDatabase space script. This creates a database that
minimizes space.

b. Run the nvTurboDatabase speed script. This creates a database that
optimizes speed but also moves the database files above to new files with a
.BAK extension.

c. Move the *.BAK files to a backup directory and then tar them up if
necessary.

This strategy has the advantage of requiring less disk space and tarring to
tapes more quickly. The disadvantage of this strategy is that the double
compress takes longer to complete. Additionally, this approach may require that
you write a small script to copy .BAK files to the backup directory and to tar
them.

Appendix D. NDBM Database Enhancements 93

94 Configuration Guide

Appendix E. Files That Migrate

If you are migrating from Version 4, Version 5, or Version 5.1 or if you are
reinstalling Version 7, you can migrate the following categories of files:

Table 13. File That Migrate

Directory File Category

/usr/OV/ALL All categories

This includes all the categories listed in this section. Use this
category if you want to migrate all data.

/usr/OV/ALL.USER All user-defined categories

This includes all the categories listed in this section except the
categories that have the .USER extension, only the user-defined
categories are migrated. For example, there are two categories for
MIBs: /usr/OV/snmp_mibs and /usr/OV/snmp_mibs.USER. The
.USER file contains the user-defined MIBs. If you select
/usr/OV/ALL.USER, the /usr/OV/snmp_mibs.USER category is
migrated, but the /usr/OV/snmp_mibs category is not.

/usr/OV/databases/openview Topology map database

This includes the ovwdb, mapdb, and topology databases. Server
only.

/usr/OV/databases/snmpCollect SNMP collection data

This includes all data that the snmpCollect daemon gathers. The
snmpCollect task definitions are stored in the
/usr/OV/conf/snmpCol.conf file, which is migrated only if you select
the /usr/OV/conf file category. Server only.

/usr/OV/servers/Servername/databases Map database

Client only.

/usr/OV/registration Application registration files

This includes all product-defined application registration files,
user-added application registration files (ARFs), and all ARFs added
by other integrated applications.

/usr/OV/fields Field registration files

This includes all product-defined and user-added field registration
files (FRFs) and FRFs added by other integrated applications,
except for the snmp_fields file. The snmp_fields file is not migrated.
Server only.

/usr/OV/symbols Symbol type registration files

This includes all product-defined and user-added symbol type
registration files (STRFs) and STRFs added by other integrated
applications.

/usr/OV/lrf Local registration files

This includes all product-defined and user-added local registration
files (LRFs) and LRFs added by other integrated applications.
Server only.

95

Table 13. File That Migrate (continued)

Directory File Category

Configuration files /usr/OV/conf (Server only)

This includes the following files:
v HPoid2type
v emstest.src
v xmpcfg.dat
v ovsuf
v ovors
v ovsnmp.conf
v trapd.conf
v oid_to_type
v oid_to_protocol
v oid_to_command
v oid_to_label
v mibExpr.conf
v mib.coerce
v mib.odi
v mib2.def
v snmpCol.conf
v dbconf.dat
v rdb_tracemask
v ovevent.db
v ovevent.dest
v snmpColFiles
v snmpmib
v snmpmib.bin
v nc.seed
v “netmon seed file”
v “backup manager seed file”
v “server clients list”

Configuration files (continued) /usr/OV/conf (Server only) (continued)

This includes the following files:
v “user-defined .modem files”
v tralertd.conf
v tralertd.default
v tralertd.filter
v tralertd_default.filter
v nvdbtools/nvsniffer.conf
v communityNames.conf
v location.conf
v mnpcodes.desc
v mnpcodes.desc.undo
v ESE.automation
v nv.carriers
v nvpaging.protocols
v tecint.conf
v nvpager.config
v nvpager.warm
v rulesets/Default.rs
v rulesets/forwardall.rs
v rulesets/* (user-added)
v C/oid_to_sym
v C/nnm_to_ovw
v C/trapd.conf
v C/if_to_sym

96 Configuration Guide

Table 13. File That Migrate (continued)

Directory File Category

/usr/OV/app-defaults Application default files

This includes all product-defined X-Default files.

/usr/OV/security Security files

This includes all security configuration files, product-defined and
user-added security registration files (SRFs), and SRFs added by
other integrated applications. Server only.

/usr/OV/snmp_mibs All loadable MIB files

This includes all product-defined and user-added MIB files and MIBs
added by other integrated applications. Server only.

/usr/OV/snmp_mibs.USER User loadable MIB files

This includes all the MIB files that were not originally installed with
Tivoli NetView. This category is a subset of the /usr/OV/snmp_mibs
category. Server only.

/usr/OV/reports Report files

This includes all product-defined and user-added reports and
reports added by other integrated applications.

/usr/OV/filters Filter files

This includes all product-defined and user-added filters and filters
added by other integrated applications.

/usr/OV/bitmaps All bitmap files

This includes all product-defined and user-added bitmaps and
bitmaps added by other integrated applications.

/usr/OV/bitmaps.USER User bitmap files

This includes all the bitmap files that were not originally installed
with Tivoli NetView. This category is a subset of the /usr/OV/bitmaps
category.

/usr/OV/backgrounds All background files

This includes all product-defined and user-added backgrounds and
backgrounds added by other integrated applications.

/usr/OV/backgrounds.USER User background files

This includes all the background files that were not originally
installed with Tivoli NetView. This category is a subset of the
/usr/OV/background category.

/usr/OV/icons All icon files

This includes all product-defined and user-added icon definition files
and icon definition files added by other integrated applications.

/usr/OV/icons.USER User icon files

This includes all the icon definition files that were not originally
installed with Tivoli NetView. This category is a subset of the
/usr/OV/icons category.

Appendix E. Files That Migrate 97

Table 13. File That Migrate (continued)

Directory File Category

/usr/OV/help Help files

This includes product-defined MIB application and user-added help
files, and help files added by other integrated applications.

/usr/OV/cron Cron files

This includes all cron job scripts or cron job information. The active
list of /usr/OV/crontab entries is saved in this directory.

/usr/OV/bin.USER User bin files

This includes all the scripts or executable files that were not
originally installed with Tivoli NetView.

98 Configuration Guide

Appendix F. Additional Copyright and License Information

The product described in this document also contains software downloaded from
several web servers. Permission to download and use such software is conditioned
upon inclusion of the following notices.

gd 1.2 © Copyright 1994, 1995, Quest Protein Database Center, Cold Spring
Harbor Labs. Permission granted to copy and distribute this work provided that this
notice remains intact. Credit for the library must be given to the Quest Protein
Database Center, Cold Spring Harbor Labs, in all derived works. This does not
affect your ownership of the derived work itself, and the intent is to assure proper
credit for Quest, not to interfere with your use of gd. If you have questions, ask.
(“Derived works” includes all programs that utilize the library. Credit must be given
in user-visible documentation.)

gd 1.2 was written by Thomas Boutell and is currently distributed by boutell.com,
Inc.

If you wish to release modifications to gd, please clear them first by sending email
to boutell@boutell.com; if this is not done, any modified version of the gd library
must be clearly labeled as such.

The Quest Protein Database Center is funded under Grant P41-RR02188 by the
National Institutes of Health.

Written by Thomas Boutell, 2/94–8/95.

The GIF compression code is based on that found in the pbmplus utilities, which in
turn is based on GIFENCOD by David Rowley. See the notice below:

Based on GIFENCOD by David Rowley. A Lemple-Ziv compression based on
“compress”.

Modified by Marcel Wijkstra.

Copyright © 1989 by Jef Poskanzer.

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above
copyright notice appears in all copies and that both that copyright notice and this
permission appear in all supporting documentation. This software is provided “as is”
without express or implied warranty.

The Graphics Interchange Format © is the Copyright property of CompuServe
Incorporated. GIF (sm) is a Service Mark property of CompuServe Incorporated.

The GIF decompression is based on that found in the pbmplus utilities, which in
turn is based on GIFDECOD by David Koblas. See the notice below:

Copyright 1990, 1991, 1993, David Koblas (koblas@netcom.com).

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above

99

copyright notice appears in all copies and that both that copyright notice and this
permission appear in all supporting documentation. This software is provided “as is”
without express or implied warranty.

GIFtrans v1.12

Convert any GIF file into a GIF89a. Allows for setting the transparent or background
color, changing colors, adding or removing comments. Also code to analyze GIF
contents.

Copyright © 24.2.94 by Andreas Ley

Permission to use, copy, modify, and distribute this software for any purpose and
without fee is hereby granted, provided that the above copyright notice appears in
all copies. This software is provided “as is” without express or implied warranties.

100 Configuration Guide

Glossary

This glossary defines technical terms used in the
documentation for Tivoli products and includes
selected terms and definitions from:

v The American National Standard Dictionary for
Information Systems , ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 11 West 42nd Street, New
York, New York 10036. Definitions are identified
by the symbol (A) after the definition.

v The ANSI/EIA Standard—440-A, Fiber Optic
Terminology. Copies may be purchased from
the Electronic Industries Association, 2001
Pennsylvania Avenue, N.W., Washington, DC
20006. Definitions are identified by the symbol
(E) after the definition.

v The Information Technology Vocabulary
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of this
vocabulary are identified by the symbol (I) after
the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

v The IBM® Dictionary of Computing , New York:
McGraw-Hill, 1994.

v Internet Request for Comments: 1208, Glossary
of Networking Terms

v Internet Request for Comments: 1392, Internet
Users’ Glossary

v The Object-Oriented Interface Design: IBM
Common User Access® Guidelines , Carmel,
Indiana: Que, 1992.

The following cross-references are used in this
glossary:

Contrast with:
This refers the reader to a term that has
an opposed or substantively different
meaning.

See: This refers the reader to (a) a related
term, (b) a term that is the expanded form

of an abbreviation or acronym, or (c) a
synonym or more preferred term.

Obsolete term for:
This indicates that the term should not be
used and refers the reader to the
preferred term.

A
ABAP/4. See Advanced Business Application
Programming/4.

absolute path. A path that begins with the root
directory. The absolute path may also be known as the
“full pathname.” Contrast with relative path.

abstract model. In Tivoli Global Enterprise Manager,
the business description files that logically describe a
particular business system.

abstract syntax notation 1 (ASN.1). The Open
Systems Interconnection (OSI) method for abstract
syntax specified in the following standards:

v ITU-T Recommendation X.208 (1988) | ISO/IEC
8824: 1990

v ITU-T Recommendation X.680 (1994) | ISO/IEC
8824-1: 1994

accelerator. (1) In a user interface, a key or
combination of keys that invokes an application-defined
function. (2) In the AIXwindows® Toolkit, a keyboard
alternative to a mouse button action; for example,
holding the <Shift> and <M> keys on the keyboard can
be made to post a menu in the same way that a mouse
button action does. Accelerators typically provide
increased input speed and greater convenience.

access control. In computer security, the process of
ensuring that the resources of a computer system can
be accessed only by authorized users in authorized
ways.

access control list. (1) In computer security, a
collection of all access rights for one object. (2) In
computer security, a list associated with an object that
identifies all the subjects that can access the object and
their access rights; for example, a list associated with a
file that identifies users who can access the file and
identifies their access rights to that file.

ACF. See Adapter Configuration Facility.

action. (1) An operation on a managed object, the
semantics of which are defined as part of the managed
object class definition. (2) In the AIX operating system,

101

a defined task that an application performs. An action
modifies the properties of an object or manipulates the
object in some way.

Action Message Retention Facility (AMRF). An
OS/390 facility that, when active, retains all action
messages except those specified by the installation.

adapter. (1) A part that electrically or physically
connects a device to a computer or to another device.
(2) Software that enables different software components
or products to interact with one another. (3) See event
adapter.

Adapter Configuration Facility (ACF). In the Tivoli
Enterprise Console®, a graphical user interface that
enables a Tivoli administrator to easily configure and
customize event adapters.

ADE. See Tivoli Application Development Environment.

ADF. See application description file.

Administrative Domain. A collection of hosts and
routers, and the interconnecting networks, managed by
a single administrative authority.

administrator. See Tivoli administrator.

administrator collection. In a Tivoli environment, the
collection for administrator objects that is generated by
Tivoli Enterprise™ software. This container is
represented by the Administrator icon on the Tivoli
desktop; opening the icon provides access to
information about each Tivoli administrator.

admin role. See authorization role.

Advanced Business Application Programming/4
(ABAP/4). A fourth-generation programming language
in which SAP R/3 application software is written.

AEF. See Tivoli Application Extension Facility .

agent. (1) In systems management, a user that, for a
particular interaction, has assumed an agent role. (2) An
entity that represents one or more managed objects by
(a) emitting notifications regarding the objects and (b)
handling requests from managers for management
operations to modify or query the objects. (3) A system
that assumes an agent role.

Agent Policy Manager (APM). In Tivoli NetView, a
function that controls Mid-Level Manager (MLM)
configurations in a network from a single, central
location.

agent role. In systems management, a role assumed
by a user in which the user is capable of performing
management operations on managed objects and of
emitting notifications on behalf of managed objects.

aggregate object. In the NetView Graphic Monitor
Facility, an object that represents a collection of real
objects.

AIXwindows Toolkit. An object-oriented collection of
C language data structures and subroutines that
supplement the Enhanced X-Windows Toolkit and
simplify the creation of interactive client application
interfaces.

alarm. A signal, either audible or visual, at a device
such as a display station or printer that is used to notify
the user that a condition requiring the user’s attention
exists.

alarm level. In Tivoli Distributed Monitoring, the state
of a monitor when a specified threshold has been
reached. A Tivoli administrator can set thresholds for
each alarm level and have Tivoli Distributed Monitoring
trigger a different response (an action and an event) for
each level. There can also be several responses for
each alarm level.

alert. (1) A message sent to a management services
focal point in a network to identify a problem or an
impending problem. (2) In SNA management services
(SNA/MS), a high priority event that warrants immediate
attention.

alias name. A name that is defined in one network to
represent a logical unit name in another interconnected
network. The alias name does not have to be the same
as the real name; if these names are not the same,
translation is required.

alias name translation facility. In Tivoli NetView for
OS/390, a function for converting logical unit names,
logon mode table names, and class-of-service names
used in one network into equivalent names to be used
in another network.

allomorphism. The ability of an instance of a class to
be managed as an instance of one or more different but
compatible managed object classes.

AMP. See application management package.

AMRF. See Action Message Retention Facility.

AMS. See Application Management Specification.

AOF. See application object file.

AON. See Automated Operations Network.

APAR. See authorized program analysis report.

API. See application programming interface.

APM. See Agent Policy Manager.

application. A collection of software components used
to perform specific types of user-oriented work on a
computer.

102 Configuration Guide

application description file (ADF). In the context of
the Application Management Specification (AMS), a
readable, ASCII text file that contains information for
managing an application. Application description files
are based on the Management Information Format
(MIF). Application description files include component
description files, global description files, and business
description files (business system description files,
business system component description files, business
system mapping description files, and business
subsystem description files).

application management package (AMP). In a Tivoli
environment, a compressed file that contains the
application description files and other necessary files for
managing an application. These include one global
description file, one or more component description
files, task scripts, and executable programs. The
application management package can also include the
application object file or the source files for the
application itself.

Application Management Specification (AMS). A
specification that presents a standard for managing
applications. The Application Management Specification
was developed in collaboration with the Tivoli Partners
and Tivoli customers to address the problems
associated with multitiered applications.

application object file (AOF). In a Tivoli environment,
an ASCII text file that contains the names of the global
description file and the component description files,
which together describe the management characteristics
of an application. The Tivoli Module Designer and the
Tivoli Module Builder can import an application object
file that was created by the obsolete Tivoli Developer
Kit.

application plane. In Tivoli NetView, the submap layer
on which symbols of objects that are managed by at
least one network or systems management application
program are displayed. Symbols on the application
plane are displayed without shading, which makes them
appear directly against the background plane. See user
plane.

application programming interface (API). A software
interface that enables applications to communicate with
each other. An API is the set of programming language
constructs or statements that can be coded in an
application program to obtain the specific functions and
services provided by an underlying operating system or
service program.

application registration file (ARF). A file created to
integrate an application program into Tivoli NetView by
defining (a) the application program’s position in the
menu structure for Tivoli NetView, (b) where help
information is found, (c) the number and types of
parameters allowed, (d) the command used to start the
application program, and (e) other characteristics of the
application program.

Application Response Measurement (ARM). An
application programming interface that was developed
by a group of leading technology vendors, including
Tivoli Systems Inc., and that can be used to monitor the
availability and performance of business transactions
within and across diverse applications and systems. The
monitoring is done from the perspective of the
applications; therefore, it reflects the units of work that
are important from the perspective of the business. For
example, using ARM, a business could instrument an
application to discover:

v Whether the application is hung

v The level of response time that the application is
experiencing

v Where the bottlenecks are occurring during the
execution of the application

v Who is using the application and how much they are
using it

v How to tune the system environment to run the
application more efficiently

v What the application is doing during the reported
response time

v Where in the system environment a transaction is
spending its time

APPNTAM. See SNA topology manager.

APPN® Topology and Accounting Manager
(APPNTAM). See SNA topology manager.

ARF. See application registration file.

ARM. (1) See Application Response Measurement. (2)
See automatic restart manager.

ARM agent. An agent that monitors software that is
instrumented using the Application Response
Measurement (ARM). The ARM agent is shipped as part
of Tivoli Distributed Monitoring.

ASN.1. See abstract syntax notation 1.

ASYNC. See asynchronous.

asynchronous (ASYNC). (1) Pertaining to two or
more processes that do not depend upon the
occurrence of specific events such as common timing
signals. (T) (2) Without regular time relationship;
unexpected or unpredictable with respect to the
execution of program instructions.

asynchronous monitor. In Tivoli Distributed
Monitoring, a monitor that receives data in an
unsolicited event and interprets the data immediately.
Contrast with synchronous monitor.

attribute. A characteristic that identifies and describes
a managed object. The characteristic can be
determined, and possibly changed, through operations
on the managed object.

Glossary 103

authentication. (1) In computer security, verification of
the identity of a user or the user’s eligibility to access an
object. (2) In computer security, verification that a
message has not been altered or corrupted. (3) In
computer security, a process used to verify the user of
an information system or protected resources.

authorization. (1) In computer security, the right
granted to a user to communicate with or make use of a
computer system. (T) (2) An access right. (3) The
process of granting a user either complete or restricted
access to an object, resource, or function.

authorization role. In a Tivoli environment, a role
assigned to Tivoli administrators to enable them to
perform their assigned systems management tasks. A
role may be granted over the entire Tivoli Management
Region or over a specific set of resources, such as
those contained in a policy region. Examples of
authorization roles include: super, senior, admin, and
user.

authorized operator. In Tivoli NetView for OS/390, an
operator who has been authorized to receive
undeliverable messages and lost terminal messages.
See authorized receiver.

authorized program analysis report (APAR). A
report of a problem caused by a suspected defect in a
current unaltered release of a program.

authorized receiver. In Tivoli NetView for OS/390, an
authorized operator who receives the unsolicited and
authorized-receiver messages that are not assigned to a
specific operator.

Automated Operations Network (AON). In Tivoli
NetView for OS/390, the component that handles
automated resource monitoring, recovery, and tracking.

automated response. In a Tivoli environment, a
predefined response to particular events that is
automatically executed by a Tivoli application. For
example, if the Tivoli Enterprise Console detects that a
process has terminated early, it can automatically restart
the process without the intervention of the Tivoli
administrator.

automatic reactivation. In Tivoli NetView for OS/390,
the activation of a node from the inactive state without
any action by the network operator.

automatic restart manager (ARM). An OS/390
recovery function that can automatically restart batch
jobs and started tasks after they or the system on which
they are running terminate unexpectedly.

AutoPack Control Center. A Tivoli Software
Distribution tool that is installed on a Windows-based
PC and enables a Tivoli administrator to create an
AutoPack file. The AutoPack Control Center produces
the AutoPack file by (a) taking snapshots of the PC’s
drive and system configuration before and after the

installation of an application on the PC and (b) capturing
the differences between these snapshots and the
distribution instructions in the AutoPack file.

AutoPack file. In Tivoli Software Distribution, an
installable image that is used to distribute
“shrinkwrapped” applications to multiple PC targets. The
file contains a description of PC software application
files and directories, information on how to distribute
these files and directories, and any system configuration
changes needed by the application. A Tivoli
administrator must associate an AutoPack file with an
AutoPack profile.

AutoPack profile. A Tivoli Software Distribution profile
that references an AutoPack file.

autotask. (1) In Tivoli NetView for OS/390, an
unattended operator station task that does not require a
terminal or a logged-on user. Autotasks can run
independently of VTAM® and are typically used for
automated console operations. (2) Contrast with
logged-on operator.

availability management. The Tivoli management
discipline that addresses the gathering, collecting, and
routing of information regarding the operational status of
an organization’s network computing system and
enables the appropriate corrective action. See
deployment management, operations and
administration, and security management.

B
backend. In the AIX operating system, the program
that sends output to a particular device.

background plane. In Tivoli NetView, the lowest
submap layer. The background plane provides the
background against which symbols are displayed. A
background picture can be placed in the background
plane to provide a context for viewing symbols. See
application plane and user plane.

background process. (1) A process that does not
require operator intervention but can be run by the
computer while the workstation is used to do other
work. (2) In the AIX operating system, a mode of
program execution in which the shell does not wait for
program completion before prompting the user for
another command. (3) Contrast with foreground
process.

background task. A task that is running even though
the user is not currently interacting with it. Contrast with
foreground task.

bandwidth. A measure of the capacity of a
communication transport medium (such as a TV cable)
to convey data.

104 Configuration Guide

BARC program. Obsolete term for configuration
program. “BARC” is an acronym for “before, after,
removal, and commit.”

BAROC. See Basic Recorder of Objects in C.

base module. In a Tivoli environment, a management
module that describes the basic management
characteristics of a particular application or business
system to the Tivoli management software. Unlike Tivoli
GEM modules and Tivoli Plus modules, base modules
are developed without the use of a template.

bash. Bourne-again shell. A portable, command-line
interface and script interpreter that is compatible with
the UNIX Bourne and Korn shells and includes some
features of the UNIX C shell.

Basic Input/Output System (BIOS). Code that
controls basic hardware operations, such as interactions
with diskette drives, hard disk drives, and the keyboard.

Basic Object Adapter (BOA). Software that provides
CORBA-compliant services for object implementations.

Basic Recorder of Objects in C (BAROC). In the
event server of the Tivoli Enterprise Console, the
internal representation of the defined event classes.

basic sequential access method (BSAM). In the
NetView Performance Monitor (NPM), the method by
which all PIUs collected for selected LUs can be logged
into a sequential data set as they pass through VTAM.

BCDF. See business system component description
file.

BDF. See business description file.

bean. A reusable Java™ component that is built using
the JavaBeans™ technology.

bilingual command list. In Tivoli NetView for OS/390,
a command list written in a combination of REXX and
the NetView command list language.

BIOS. (1) See Basic Input/Output System. (2) See
NetBIOS.

bitmap. (1) A representation of an image by an array
of bits. (2) A pixmap with a depth of one bit plane.

BMDF. See business system mapping description file.

BOA. See Basic Object Adapter.

bridge. (1) A functional unit that interconnects two
local area networks that use the same logical link
control protocol but may use different medium access
control protocols. (T) (2) A functional unit that
interconnects multiple LANs (locally or remotely) that
use the same logical link control protocol but that can
use different medium access control protocols. A bridge
forwards a frame to another bridge based on the

medium access control (MAC) address. (3) In the
connection of local loops, channels, or rings, the
equipment and techniques used to match circuits and to
facilitate accurate data transmission. (4) Contrast with
gateway and router.

browse. (1) To look at records in a file. (2) In the
NetView Graphic Monitor Facility, to open a view that
cannot receive status changes from Tivoli NetView for
OS/390. Contrast with monitor.

BSAM. See basic sequential access method.

BSDF. See business system description file.

BSSDF. See business subsystem description file.

buffer. (1) A routine or storage used to compensate for
a difference in rate of flow of data, or time of occurrence
of events, when transferring data from one device to
another. (A) (2) To allocate and schedule the use of
buffers. (A) (3) A portion of storage used to hold
input or output data temporarily.

bulletin board. In the Tivoli environment, the primary
mechanism by which the Tivoli Management Framework
and Tivoli applications communicate with Tivoli
administrators. The bulletin board is represented as an
icon on the Tivoli desktop through which the
administrators can access notices. Tivoli applications
use the bulletin board as an audit trail for important
operations that the administrators perform.

business component. An application or other system
resource that can be managed by systems management
software.

business description file (BDF). In a Tivoli
environment, a generic name for any of these
application description files: business system description
file (BSDF), business system component description file
(BCDF), and business system mapping description file
(BMDF), and business subsystem description file
(BSSDF).

business subsystem description file (BSSDF). In
the context of the Application Management Specification
(AMS), an optional application description file that
enables the logical grouping of business components in
a business system. In this file, a Tivoli administrator can
specify tasks and monitors that are common to the
subsystem. The business subsystem description file
references the applicable business system description
file and one or more business system component
description files.

business system. A group of diverse but
interdependent applications and other system resources
that interact to accomplish specific business functions.

business system component description file
(BCDF). In the context of the Application Management
Specification (AMS), an application description file that

Glossary 105

defines the logical representation of a business
component. When defining a business system, at least
one business system component description file is
required for each business system definition.

business system description file (BSDF). In the
context of the Application Management Specification
(AMS), the highest-level application description file that
identifies the components of a business system,
including monitors, tasks, and connections. A Tivoli
administrator can also define icon and help files at this
level (for creating a business system icon and help
information).

business system mapping description file (BMDF).
In the context of the Application Management
Specification (AMS), the application description file that
maps a real business component (which is defined in a
component description file) to a logical business
component (which is represented in a business system
component description file). Each business system
mapping description file references a business system
component description file.

C
CADAM. Computer-Aided Design and Manufacturing.
The use of computers in the design and manufacture of
products such as cars, airplanes, ships, and computers.

call. (1) The action of bringing a computer program, a
routine, or a subroutine into effect, usually by specifying
the entry conditions and jumping to an entry
point. (I) (A) (2) In data communication, the actions
necessary to make a connection between two stations
on a switched line. (3) In communications, a
conversation between two users. (4) To transfer control
to a procedure, program, routine, or subroutine. (5) To
attempt to contact a user, regardless of whether the
attempt is successful.

callback. In the AIX operating system, a procedure
that is called if and when certain specified conditions
are met.

canonical. In computer science, pertaining to an
expression that conforms to a specific set of rules.

CATIA. Computer-Graphics Aided Three-Dimensional
Interactive Application.

CC. See change control.

CCMS. (1) See Computing Center Management
System. (2) See Configuration Change Management
System.

CDF. See component description file.

CDNM session. See cross-domain network manager
session.

CDS. See control data set.

central site control facility (CSCF). In Tivoli NetView
for OS/390, NetView for VM, and NetView for VSE, a
function that allows a network operator to execute the
test facilities of the IBM 3172 Nways® Interconnect
Controller and the IBM 3174 Establishment Controller
remotely from the NetView console.

change control (CC). The use of change
management commands for the installation or removal
of software or data.

change control administrator. A person responsible
for software distribution and change control activities.

change control client. A workstation that (a) receives
software and data files from its change control server
and (b) installs and removes software and data files as
instructed by its change control server.

change control domain. A change control server and
its change control clients.

change control server. A workstation that controls
and tracks the distribution of software and data files to
other workstations.

change control single node. A workstation that
controls, tracks, installs, and removes software and data
files for itself. A CC single node can also prepare
software for distribution. Contrast with change control
client and change control server.

change management. The process of planning (for
example, scheduling) and controlling (for example,
distributing, installing, and tracking) software changes
over a network. This is sometimes known as “software
management.”

check box. A square box with associated text that
represents a choice. When a user selects the choice,
the check box is filled to indicate that the choice is
selected. The user can clear the check box by selecting
the choice again, thereby deselecting the choice.

checkpoint. (1) Information about the status of a
program’s execution or the status of a data transfer that
is recorded to enable the program or the data transfer
to be restarted if it is ever interrupted. (2) The time at
which such information is recorded. (3) To record such
information.

child process. In the UNIX operating system, a
process, started by a parent process, that shares the
resources of the parent process. See fork.

child resource. In the NetView Graphic Monitor
Facility, a resource that is directly subordinate to
another resource (the parent) in a hierarchy.

CICS®. See Customer Information Control System.

class. (1) In object-oriented design or programming, a
model or template that can be instantiated to create

106 Configuration Guide

objects with a common definition and therefore,
common properties, operations, and behavior. An object
is an instance of a class. (2) In the AIX operating
system, pertaining to the I/O characteristics of a device.
System devices are classified as block or character
devices.

CLI. See command line interface.

client. A computer system or process that requests a
service of another computer system or process that is
typically referred to as a server. Multiple clients may
share access to a common server.

client daemon. An AIX process that performs the
client’s operations.

client/server. In communications, the model of
interaction in distributed data processing in which a
program at one site sends a request to a program at
another site and awaits a response. The requesting
program is called a client; the answering program is
called a server.

client workstation. In the NetView Graphic Monitor
Facility, a workstation that depends on a server
workstation to provide it with views and status
information. A client workstation receives status
information from the server workstation over an LU 6.2
session.

cloning. (1) In a Tivoli environment, an operation that
enables a Tivoli administrator to replicate profiles. This
capability simplifies the task of creating multiple profiles
with similar properties. See prototype profile. (2) In a
Tivoli environment, a function of Tivoli NetView for
OS/390 that enables a system programmer to replicate
NetView definitions across the systems comprising a
sysplex, thus simplifying the task of creating multiple
NetView definitions with similar properties.

CNM. See communication network management.

CNM application program. A VTAM application
program that issues and receives formatted
management services request units for physical units.
Tivoli NetView for OS/390 is an example of a CNM
application program.

CNM processor. In Tivoli NetView for OS/390, a
program that manages one of the functions of a
communication system. A CNM processor is executed
under control of Tivoli NetView for OS/390.

collaborative management. A cooperative
relationship between Internet commerce partners and
Internet service providers (ISPs) to ensure the
successful completion of business transactions.

collection. In a Tivoli environment, a container that
groups objects on a Tivoli desktop, thus providing the
Tivoli administrator with a single view of related
resources. Either the Tivoli Management Framework or

a Tivoli administrator can create a collection. The
contents of a collection are referred to as its members.
Examples of collections include the administrator
collection and the generic collection; the administrator
collection is an example of a collection generated by the
Tivoli Management Framework.

collection point block (CPB). In the NetView
Performance Monitor (NPM), a control block used to
coordinate the collection of network and session data.

combined alert. In Tivoli NetView for OS/390, an alert
that includes elements of a non-generic and a generic
alert in one network management vector transport
(NMVT).

command. (1) A request from a terminal for the
performance of an operation or the execution of a
particular program. (2) In Tivoli NetView for OS/390, a
sequence of characters that is submitted to cause an
action. A command contains a verb and an object.

command authorization. The process of authorizing a
network operator to use various commands. See
NetView command authorization table, Resource
Access Control Facility, scope of command
authorization, and System Authorization Facility.

command facility. In Tivoli NetView for OS/390, the
component that is a base for command processors that
can monitor, control, automate, and improve the
operation of a network.

command indicator. In the NetView Graphic Monitor
Facility, a numeric identifier that is assigned to a
network resource by its controlling resource manager to
indicate the command support characteristics for the
resource.

command interpreter. In the AIX operating system, a
program that sends instructions to the kernel.

command line interface (CLI). A type of computer
interface in which the input command is a string of text
characters. Contrast with graphical user interface.

command list. In Tivoli NetView for OS/390, a list of
commands and statements designed to perform a
specific function for the user. Command lists can be
written in REXX or in the NetView command list
language.

command procedure. In Tivoli NetView for OS/390, a
command list, a command processor written in a
high-level language (HLL), or a NetView pipeline.

command processor. In Tivoli NetView for OS/390, a
module designed to perform a specific function for the
user. Users can write command processors in
assembler language or in a high-level language (HLL);
command processors are invoked as commands.

Glossary 107

command profile editor (CPE). In Tivoli Global
Enterprise Manager and Tivoli NetView for OS/390, a
function of the topology console that enables Tivoli
administrators who have the proper administrative
authority to control the content, order, and capabilities of
pop-up menus for individual operators or groups of
operators.

commit operation. In Tivoli Software Distribution, an
operation performed by a configuration program on
target managed nodes after a file package distribution.
This function enables a Tivoli administrator to distribute
a file package to multiple targets and to make the
distributed information available on all targets at the
same time.

Common Object Request Broker Architecture
(CORBA). A specification produced by the Object
Management Group (OMG) that presents standards for
various types of object request brokers (such as
client-resident ORBs, server-based ORBs,
system-based ORBs, and library-based ORBs).
Implementation of CORBA standards enables object
request brokers from different software vendors to
interoperate.

Common Programming Interface for
Communications (CPI-C). An evolving application
programming interface (API), embracing functions to
meet the growing demands from different application
environments and to achieve openness as an industry
standard for communications programming. CPI-C
provides access to interprogram services such as (a)
sending and receiving data, (b) synchronizing
processing between programs, and (c) notifying a
partner of errors in the communication.

communication network management (CNM). The
process of designing, installing, operating, and
managing distribution of information and control among
users of communication systems.

communications infrastructure. In the AIX operating
system, a framework of communication that consists of
a postmaster, an object registration service, a startup
file, communication protocols, and application
programming interfaces.

Communications Server. An IBM licensed program
that supports (a) the development and use of
application programs across two or more connected
systems or workstations, (b) multiple concurrent
connections that use a wide range of protocols, and (c)
several application programming interfaces (APIs) that
may be called concurrently and that are designed for
client/server and distributed application programs.
Communications Server includes the necessary
interfaces for network management and is available on
several operating systems (such as AIX, OS/2® Warp,
OS/390, and Windows NT®).

community. In the Simple Network Management
Protocol (SNMP), an administrative relationship between
entities.

community name. In the Simple Network
Management Protocol (SNMP), a string of octets
identifying a community.

component description file (CDF). In the context of
the Application Management Specification (AMS), an
application description file that contains information
about a specific component in a management-ready
application. Each management-ready application can
contain multiple components, each of which is
represented by one component description file.

Computing Center Management System (CCMS).
The SAP interface for monitoring a SAP R/3 system.

configuration. (1) The manner in which the hardware
and software of an information processing system are
organized and interconnected. (T) (2) The devices
and programs that make up a system, subsystem, or
network.

Configuration Application. See MLM Configuration
Application.

Configuration Change Management System
(CCMS). In a Tivoli environment, a distributed,
hierarchical database in which configuration data is
stored for use by systems management applications in
effecting configuration changes on groups of systems.

configuration file. A file that specifies the
characteristics of a system device or network.

configuration management. The control of
information necessary to identify both physical and
logical information system resources and their
relationship to one another.

configuration program. In Tivoli Software Distribution,
a feature that enables a Tivoli administrator to perform
operations (a) before or after file package distributions,
(b) before or after file package removal, (c) during a file
package commit operation, or (d) after an error stops a
distribution or removal operation.

configuration repository. In a Tivoli environment, the
relational database that contains information that is
collected or generated by Tivoli applications. Following
are examples of the information that is stored in the
configuration repository:

v Tivoli Enterprise Console stores information regarding
events.

v Tivoli Inventory stores information regarding
hardware, software, system configuration, and
physical inventory.

v Tivoli Software Distribution stores information
regarding file package operations.

108 Configuration Guide

connector class. In Tivoli NetView, an object class
used for objects that connect different parts of the
network and that route or switch traffic between these
parts. This class includes gateways, repeaters (including
multiport repeaters), and bridges. Contrast with network
class.

console event. In a Tivoli environment, an event sent
to the Tivoli Enterprise Console.

container. A visual user-interface component that
holds objects.

control data set (CDS). In the NetView Performance
Monitor (NPM), a System Modification Program (SMP)
data set used in the NPM installation process.

control desk. In Tivoli NetView, a component of the
graphical user interface (GUI) that enables the network
operator to group application program instances
together.

control program. (1) A computer program designed to
schedule and to supervise the execution of programs of
a computer system. (I) (A) (2) The part of the AIX
operating system that determines the order in which
basic functions should be performed.

control statement. In Tivoli NetView for OS/390, a
statement in a command list that controls the
processing sequence of the command list or allows the
command list to send messages to the operator and
receive input from the operator.

CORBA. See Common Object Request Broker
Architecture.

correlation activity. See event correlation.

CPB. See collection point block.

CPE. See command profile editor.

CPI-C. See Common Programming Interface for
Communications.

critical resource. In the NetView Graphic Monitor
Facility, a resource that is considered important to the
operation of the network and therefore has a high
aggregation priority.

cron table. In the AIX operating system, a table that is
used to schedule application programs and processes.
“Cron” is an abbreviation for “chronological.”

cross-domain network manager session. A session
between two network managers (for example, Tivoli
NetView for OS/390) in separate domains.

cross-system coupling facility (XCF). A component
of the MVS™ operating system that provides functions
to support cooperation between authorized programs
running within a sysplex.

CSCF. See central site control facility.

current directory. See working directory.

Customer Information Control System (CICS). An
IBM licensed program that provides online transaction
processing services and management for critical
business applications. CICS runs on many IBM and
non-IBM platforms (from the desktop to the mainframe)
and is used in various types of networks that range in
size from a few terminals to many thousands of
terminals. The CICS application programming interface
(API) enables programmers to port applications among
the hardware and software platforms on which CICS is
available. Each product in the CICS family can interface
with the other products in the CICS family, thus enabling
interproduct communication.

custom monitor. In Tivoli Distributed Monitoring, a
monitor that is implemented as a script or program by
the Tivoli administrator.

D
daemon. A program that runs unattended to perform a
standard service. Some daemons are triggered
automatically to perform their task; others operate
periodically.

DASD conservation option. In Tivoli NetView for
OS/390, an installation option that allows Tivoli NetView
for OS/390 to be installed without the online help facility
and hardware monitor data presentation panels.

database. (1) A collection of data with a given
structure for accepting, storing, and providing, on
demand, data for multiple users. (T) (2) A collection of
interrelated data organized according to a database
schema to serve one or more applications. (T) (3) A
collection of data fundamental to a system. (A) (4) A
collection of data fundamental to an enterprise. (A)

data model. (1) A logical view of the organization of
data in a database. (T) (2) In a database, the user’s
logical view of the data in contrast to the physically
stored data, or storage structure. (A) (3) A
description of the organization of data in a manner that
reflects the information structure of an enterprise. (A)

data modeling. A structured set of techniques for
defining and recording business information
requirements. It is a depiction of the user’s view of the
data needs of the organization in a consistent and
rigorous fashion. The data model eventually serves as
the basis for translation to computer system databases.

data services command processor (DSCP). In Tivoli
NetView for OS/390, a component that structures a
request for recording and retrieving data in the
application program’s database and for soliciting data
from a device in the network.

Glossary 109

data services manager (DSM). In Tivoli NetView for
OS/390, a function that provides VSAM services for
data storage and retrieval.

data services request block (DSRB). In Tivoli
NetView for OS/390, the control block that contains
information that a data services command processor
(DSCP) needs to communicate with the data services
task (DST).

data services task (DST). In Tivoli NetView for
OS/390, the subtask that gathers, records, and
manages data in a VSAM file or a network device that
contains network management information.

data type. In Tivoli NetView for OS/390, one of the
three elements, which also include display type and
resource type, that are used to describe the
organization of panels. Data types include alerts,
events, and statistics.

dce-pipe-pull. A Printing Systems Manager (PSM)
document transfer method in which the client saves
documents in a file and transfers the address of the file
to the server. The file is later transferred to the server
upon request from the server. This is an efficient
transfer method for large jobs. Contrast with
with-request.

default policy. In a Tivoli environment, a set of
resource property values that are assigned to a
resource when the resource is created.

definition statement. (1) In VTAM, the statement that
describes an element of the network. (2) In NCP, a type
of instruction that defines a resource to the NCP.

defragmentation. The process of running a software
utility to rewrite fragmented data to contiguous sectors
of a computer storage medium to improve access and
retrieval time. Contrast with fragmentation.

demand poll. In Tivoli NetView, a polling operation
initiated by the user.

deployment management. The Tivoli management
discipline that addresses the automation of configuration
and change management activities for the ever-evolving
components of a network computing system. See
availability management, operations and administration,
and security management.

desktop. See Tivoli desktop.

Desktop Management Interface (DMI). A
protocol-independent set of application programming
interfaces (APIs) defined by the Desktop Management
Task Force (DMTF). These interfaces give management
application programs standardized access to information
about hardware and software in a system.

Desktop Management Task Force (DMTF). An
alliance of computer vendors that was convened to

define streamlined management of the diverse operating
systems commonly found in an enterprise.

developer key. In the context of SAP application
software, a key that is provided by SAP for a
developer’s use in creating or changing Advanced
Business Application Programming (ABAP) objects.

DFSMSdfp™. A DFSMS/MVS® component and a base
element of OS/390 that provides functions for storage
management, data management, program
management, device management, and distributed data
access (″dfp″ represents ″data facility product″).

DFSMSdss™. A DFSMS/MVS component and a base
element of OS/390 that is used in copying, moving,
dumping, defragmenting, and restoring data sets and
volumes (″dss″ represents ″data set services″).

DFSMShsm™. A DFSMS/MVS component and a base
element of OS/390 that is used in backing up data, in
recovering data, in managing storage space on volumes
in the storage hierarchy, and in disaster recovery (″hsm″
represents ″hierarchical storage manager″).

DFSMS/MVS. An IBM licensed program that provides
storage, data, and device management functions in an
MVS/ESA™ Version 5 or an OS/390 environment.
DFSMS/MVS includes these components: DFSMSdfp,
DFSMSdss, DFSMShsm, and DFSMSrmm™. ″DFSMS″
represents ″Data Facility Storage Management
Subsystem.″

DFSMSrmm. A DFSMS/MVS component and base
element of OS/390 that manages removable media
(″rmm″ represents ″removable media manager″).

DHCP. See Dynamic Host Configuration Protocol.

directory. In a hierarchical file system, a container for
files or other directories. See path.

discriminator. An object that enables a system to
select operations and event reports relating to other
managed objects. See event forwarding discriminator.

display type. In Tivoli NetView for OS/390, one of the
three elements, which also include data type and
resource type, that are used to describe the
organization of panels. Display types include total, most
recent, user action, and detail.

distributed computing. See network computing.

Distributed Monitoring engine. In a Tivoli
environment, the client software that is installed on each
managed node, gateway, and endpoint that is being
monitored by Tivoli Distributed Monitoring. The
Distributed Monitoring engine monitors resources,
compares data from monitored resources against
configured thresholds, and runs automated responses.

Distributed Monitoring proxy. See endpoint.

110 Configuration Guide

distribution program. See configuration program.

DMI. See Desktop Management Interface.

DMTF. See Desktop Management Task Force.

domain. (1) That part of a computer network in which
the data processing resources are under common
control. (T) (2) See Administrative Domain and domain
name.

domain name. In the Internet suite of protocols, a
name of a host system. A domain name consists of a
sequence of subnames separated by a delimiter
character. For example, if the fully qualified domain
name (FQDN) of a host system is ralvm7.vnet.ibm.com
, each of the following is a domain name:

v ralvm7.vnet.ibm.com

v vnet.ibm.com

v ibm.com

double recording. In Tivoli NetView for OS/390,
pertaining to the recording of certain individual events
under two resource levels.

downcall. In a Tivoli environment, a method invocation
from the TMR server or the gateway “down” to an
endpoint. Contrast with upcall.

drag and drop. To directly manipulate an object by
moving it and placing it somewhere else using a
pointing device (such as a mouse).

DSCP. See data services command processor.

DSM. See data services manager.

DSRB. See data services request block.

DST. See data services task.

Dynamic Host Configuration Protocol (DHCP). A
protocol defined by the Internet Engineering Task Force
(IETF) that is used for dynamically assigning IP
addresses to computers in a network.

E
e-business. Either (a) the transaction of business over
an electronic medium such as the Internet or (b) any
organization (for example, commercial, industrial,
nonprofit, educational, or governmental) that transacts
its business over an electronic medium such as the
Internet. An e-business combines the resources of
traditional information systems with the vast reach of an
electronic medium such as the Internet (including the
World Wide Web, intranets, and extranets); it connects
critical business systems directly to critical business
constituencies--customers, employees, and suppliers.
The key to becoming an e-business is building a
transaction-based Web site in which all core business
processes (especially all processes that require a

dynamic and interactive flow of information) are put
online to improve service, cut costs, and sell products.

ECB. See event control block.

e-commerce. The subset of e-business that involves
the exchange of money for goods or services purchased
over an electronic medium such as the Internet.

EFD. See event forwarding discriminator.

EIF. See Tivoli Event Integration Facility.

EMS. See event management services.

encapsulation. (1) In object-oriented programming,
the technique that is used to hide the inherent details of
an object. This technique is also known as “information
hiding.” (2) In object-oriented programming, a software
technique in which data is packaged with corresponding
procedures. In CORBA, the object is the mechanism for
encapsulation.

endpoint. (1) In a Tivoli environment, a Tivoli client
that is the ultimate recipient for any type of Tivoli
operation. (2) In a Tivoli environment, a Tivoli service
that runs on multiple operating systems and performs
Tivoli operations on those systems, thereby enabling the
Tivoli Management Framework to manage the systems
as Tivoli clients.

endpoint list. In a Tivoli environment, a list of all
endpoint clients in the Tivoli Management Region with
their assigned gateways. See endpoint manager.

endpoint manager. In a Tivoli environment, a service
that runs on the Tivoli server, assigns endpoint clients to
gateways, and maintains the endpoint list.

endpoint method. In a Tivoli environment, a method
that runs on an endpoint client as the result of a request
from other managed resources in the Tivoli
Management Region. Results of the method are
forwarded first to the gateway, then to the calling
managed resource.

Enhanced X-Windows Toolkit. (1) In the AIX
operating system, a collection of basic functions for
developing a variety of application environments. Toolkit
functions manage Toolkit initialization, widgets, memory,
events, geometry, input focus, selections, resources,
translation of events, graphics contexts, pixmaps, and
errors. (2) See AIXwindows Toolkit and X Window
System.

entity. Any concrete or abstract thing of interest,
including associations among things; for example, a
person, object, event, or process that is of interest in
the context under consideration, and about which data
may be stored in a database. (T)

entry point (EP). (1) The address or label of the first
instruction executed on entering a computer program,

Glossary 111

routine, or subroutine. A computer program, routine, or
subroutine may have a number of different entry points,
each perhaps corresponding to a different function or
purpose. (I) (A) (2) In SNA, a type 2.0, type 2.1,
type 4, or type 5 node that provides distributed network
management support. It sends network management
data about itself and the resources it controls to a focal
point for centralized processing, and it receives and
executes focal-point initiated commands to manage and
control its resources.

EP. See entry point.

error record template. In the AIX operating system, a
template that describes the error class, error type, error
description, probable causes, recommended actions,
and failure data for an error log entry.

euro. The monetary unit of the European Monetary
Union (EMU) that will be introduced alongside national
currencies on the first of January 1999. In May 1998,
eleven countries were confirmed for EMU membership
beginning the first of January 1999: Austria, Belgium,
Finland, France, Germany, Ireland, Italy, Luxembourg,
the Netherlands, Portugal, and Spain. On the first of
January 2002, euro notes and coins (hard currency) will
be put into circulation, and national currencies will be
withdrawn, probably over a six-month period.

EuroReady product. A product is EuroReady if the
product, when used in accordance with its associated
documentation, is capable of correctly processing
monetary data in the euro denomination, respecting the
euro currency formatting conventions (including the euro
sign). This assumes that all other products (for example,
hardware, software, and firmware) that are used with
this product are also EuroReady. IBM hardware
products that are EuroReady may or may not have an
engraved euro sign key on their keyboards.

EuroReady solution. A solution is EuroReady when
the solution providers have done the following:

1. Analyzed the euro requirements, including the need
to comply with relevant European Community (EC)
rules

2. Included the appropriate function according to these
requirements

3. Clearly demonstrated this by (a) detailing the
euro-related requirements, (b) describing how these
requirements will be implemented, and (c) declaring
when the implementation will be generally available.

event. (1) An occurrence of significance to a task
(such as the opening of a window or the completion of
an asynchronous operation). (2) In the Tivoli
environment, any significant change in the state of a
system resource, network resource, or network
application. An event can be generated for a problem,
for the resolution of a problem, or for the successful
completion of a task. Examples of events are: the
normal starting and stopping of a process, the abnormal

termination of a process, and the malfunctioning of a
server. (3) See event report.

event adapter. In a Tivoli environment, software that
converts events into a format that the Tivoli Enterprise
Console can use and forwards the events to the event
server. Using the Tivoli Event Integration Facility, an
organization can develop its own event adapters,
tailored to its network environment and specific needs.

event/automation service. In Tivoli NetView for
OS/390, a facility that translates alerts and messages
into events for the Tivoli Enterprise Console and
translates these events into NetView alerts. The
event/automation service communicates with Tivoli
NetView for OS/390 using the program-to-program
interface (PPI), and it communicates with the Tivoli
Enterprise Console using TCP/IP.

event card. In Tivoli NetView, a graphical
representation, resembling a card, of the information
contained in an event sent by an agent to a manager
reflecting a change in the status of one of the agent’s
managed nodes.

event class. In the Tivoli Enterprise Console, a
classification for an event that indicates the type of
information that the event adapter will send to the event
server.

event console. In the Tivoli Enterprise Console, a
graphical user interface (GUI) that enables system
administrators to view and respond to dispatched events
from the event server. The Tivoli Event Integration
Facility does not directly use or affect event consoles.

event control block (ECB). A control block used to
represent the status of an event.

event correlation. In the Tivoli Enterprise Console, the
process of correlating separate events to a common
cause. For example, the Tivoli Enterprise Console may
receive several NFS server not responding events from
several different applications, as well as a host down
event for the NFS server. The Tivoli Enterprise Console
can then correlate the various NFS server not
responding events to their common cause, which is: the
NFS server is “down.” See rule.

event filter. (1) In a Tivoli environment, software that
determines which events are forwarded to a specified
destination. Filtering events helps to reduce network
traffic. Tivoli administrators configure the event filters.
(2) In Tivoli NetView, a logical expression of criteria that
determine which events are forwarded to the application
program that registers the event filter with the event
sieve agent. A filter is referred to as “simple” or
“compound” depending on how it is handled by the filter
editor.

event forwarding discriminator (EFD). A managed
object that describes the criteria used to select which
event reports are sent and to whom they are sent.

112 Configuration Guide

event group. In the Tivoli Enterprise Console, a set of
events that meet certain criteria. Each event group is
represented by an icon on the event console. Tivoli
administrators can monitor event groups that are
relevant to their specific areas of responsibility.

event handler. A collection and correlation point for
events and messages.

event management services (EMS). In Tivoli
NetView, a centralized method of generating, receiving,
routing, and logging network events.

event manager. In the NetView Graphic Monitor
Facility, the component of the host subsystem that
receives alert and resolution major vectors from Tivoli
NetView for OS/390, translates these major vectors into
generic event records, and applies the event status to
the resource defined in the Resource Object Data
Manager (RODM) cache.

event report. The unsolicited report that an event has
occurred. In an Open Systems Interconnection (OSI)
context, when a managed object emits a notification, the
agent uses one or more event forwarding discriminators
(EFDs) to find the destinations to which the report is
sent.

event repository. See configuration repository.

event server. In the Tivoli Enterprise Console, a
central server that processes events. The event server
creates an entry for each incoming event and evaluates
the event against a rule base to determine whether it
can respond to or modify the event automatically. The
event server also updates the event consoles with the
current event information. If the primary event server is
not available, events can be sent to a secondary event
server.

event sieve. In Tivoli NetView, an object that is
managed by the “ovesmd” daemon, which is the event
sieve agent. The event sieve agent stores information
about the event sieve object in a database and reads
that information when the agent is started. See event
filter and event forwarding discriminator.

event slot. In a Tivoli environment, a discrete area (a
field) of an event record that contains a specific type of
information about an event.

event specifier. In the Tivoli Enterprise Console, a
rules-language program construct that is used to look
for events in the event cache. For example, it can look
for duplicate events, an event that matches a
user-specified attribute, or an event that occurs within a
certain time period. An event specifier is used in
building rules, and it dictates how the Tivoli Enterprise
Console will handle an event that it receives.

exception. An abnormal condition such as an I/O error
encountered in processing a data set or a file.

exclusive set. In Remote Operations Service (ROPS),
an option that indicates whether only the commands in
the command list can be processed by ROPS or none
of the commands in the command list can be processed
by ROPS.

exclusive submap. In Tivoli NetView, a submap that
is created by an application program wanting the
exclusive right to control what happens in the
application plane of the submap. Contrast with shared
submap.

exec. (1) In the AIX operating system, to overlay the
current process with another executable program. (2)
See fork.

executable symbol. In Tivoli NetView, a symbol
defined such that double-clicking on it causes an
application program to perform an action on a set of
target objects. Contrast with explodable symbol.

execution target. In a Tivoli environment, a managed
node on which a job or other activity is performed. For
example, if an application is being installed on a
particular server, that server is the execution target for
the installation activity.

explicit command. In Tivoli NetView for OS/390, a
command that is used to request the display of
information that the user would otherwise obtain by
navigating through a hierarchy of panels.

explodable symbol. In Tivoli NetView, a symbol
defined such that double-clicking on it or dragging and
dropping it displays the child submap of the parent
object that the symbol represents. Contrast with
executable symbol.

export/import. In Tivoli Software Distribution, a feature
that enables a Tivoli administrator to save (export) a file
package definition as a text file, to edit the keywords
and lists in the definition, and to retrieve (import) the
definition from the text file to set the properties for the
file package.

extended enterprise. The customers, suppliers,
distributors, and other business partners with whom a
company conducts e-business.

extranet. A private, virtual network that uses access
control and security features to restrict the usage of one
or more intranets attached to the Internet to selected
subscribers (such as personnel from a sponsoring
company and its business partners).

F
failover system. In Tivoli Manager for R/3, a computer
that serves as a transparent backup to a primary
computer. The primary computer and the failover

Glossary 113

system share access to a common R/3 database,
thereby enabling either machine to provide full database
support.

fanout. In communication, the process of creating
copies of a distribution to be delivered locally or to be
sent through the network.

field. (1) An identifiable area in a window. Examples of
fields are: an entry field, into which a user can type or
place text, and a field of radio button choices, from
which a user can select one choice. (2) The smallest
identifiable part of a record. (3) In Tivoli NetView, the
building block of which objects are composed. A field is
characterized by a field name, a data type (integer,
Boolean, character string, or enumerated value), and a
set of flags that describe how the field is treated by
Tivoli NetView. A field can contain data only when it is
associated with an object.

field registration file (FRF). In Tivoli NetView, a file
used to define fields for use in the object database.

file name substitution. In the AIX operating system,
the process in which the shell substitutes an
alphabetically sorted list of file names in the place of a
pattern. The shell recognizes a pattern (as opposed to a
file name) by the occurrence of a word (character string)
with either of the following characteristics:

v The word contains any of these characters: *, ?, [, or
{.

v The word begins with this character: ˜.

file package. In Tivoli Software Distribution, a profile.
The file package describes which files and directories to
distribute and how to distribute them.

file package block. In Tivoli Software Distribution, a
“snapshot” of a file package; that is, a static file
containing (a) the file package definition (b) the file
package attributes (c) the source files and directories,
and (d) the configuration programs of a specific file
package.

filter. (1) A device or program that separates data,
signals, or material in accordance with specified
criteria. (A) (2) In Tivoli NetView for OS/390, a
function that limits the data recorded in the database or
displayed at the terminal. See recording filter and
viewing filter. (3) In the AIX operating system, a
command that reads standard input data, modifies the
data, and sends it to the display screen.

filter editor. In Tivoli NetView, a part of the graphical
user interface (GUI) that enables the user to define,
modify, and delete filtering rules for use by application
programs.

firewall. In communication, a functional unit that
protects and controls the connection of one network to
other networks. The firewall (a) prevents unwanted or
unauthorized communication traffic from entering the

protected network and (b) allows only selected
communication traffic to leave the protected network.

focal point (FP). (1) A system that provides
centralized management services. (2) See management
services focal point.

foreground process. (1) In the AIX operating system,
a process that must run to completion before another
command is issued to the shell. The foreground process
is in the foreground process group, which is the group
that receives the signals generated by a terminal. (2)
Contrast with background process.

foreground task. The task with which the user is
interacting. Contrast with background task.

foreign host. See remote host.

fork. In the UNIX operating system, to create and start
a child process.

fpblock. See file package block.

FQDN. See fully qualified domain name.

fragmentation. An operating system’s process of
writing different parts of a file to discontiguous sectors
on a computer storage medium when contiguous space
that is large enough to contain the entire file is not
available. When data is thus fragmented, the time that it
takes to access the data may increase because the
operating system must search different tracks for
information that should be in one location. Contrast with
defragmentation.

FRF. See field registration file.

full pathname. See absolute path.

fully qualified domain name (FQDN). In the Internet
suite of protocols, the name of a host system that
includes all of the subnames of the domain name. An
example of a fully qualified domain name is
ralvm7.vnet.ibm.com. See host name.

G
gadget. In the AIXwindows Toolkit, a windowless
graphical object that looks like its equivalent like-named
widget but does not support the translations, actions, or
pop-up widget children supplied by that widget.

gateway. (1) A functional unit that interconnects two
computer networks with different network architectures.
A gateway connects networks or systems of different
architectures. A bridge interconnects networks or
systems with the same or similar architectures. (T)
(2) A functional unit that connects two networks or
subnetworks having different characteristics, such as
different protocols or different policies concerning
security or transmission priority. (3) The combination of
machines and programs that provide address

114 Configuration Guide

translation, name translation, and system services
control point (SSCP) rerouting between independent
SNA networks to allow those networks to communicate.
A gateway consists of one gateway NCP and at least
one gateway VTAM. (4) In a Tivoli environment,
software running on a managed node that provides all
communication services between a group of endpoints
and the rest of the Tivoli environment. This gateway
includes the multiplexed distribution (MDist) function,
enabling it to act as the fanout point for distributions to
many endpoints. (5) See router.

gateway-capable host. A host node that has a
defined NETID and SSCPNAME but does not perform
gateway control functions, such as cross-network
session initiation and termination.

gateway host. (1) A host node that contains a
gateway system services control point (SSCP). See
gateway-capable host. (2) In the AIX operating system,
a host that connects independent networks. It has
multiple interfaces, each with a different name and
address.

gateway method. In a Tivoli environment, a method
that runs on the gateway’s proxy managed node on
behalf of the endpoint. Results of the method are
forwarded to the calling managed resource.

GCS. See graphic communication server.

GDDM®. See Graphical Data Display Manager.

GDDM interface for X Window System (GDDMXD).
A graphical interface that formats and displays
characters, graphics, and images on workstation display
devices that support the X Window System.

GDDMXD. See GDDM interface for X Window System.

GDF. See global description file.

GDS. See graphic data server.

GEM. See Tivoli Global Enterprise Manager.

general topology manager (GTM). In Tivoli NetView,
the component that accepts information about resources
that are accessed through protocols other than the
Internet Protocol (IP), stores this information in a
database, and displays it to the user.

generic alert. In SNA management services
(SNA/MS), alert information that is encoded using a
method in which code points provide an index into short
units of stored text. The use of generic alerts prevents
the receiver from having to recognize and understand
each unique problem for which an alert is sent. Contrast
with non-generic alert.

generic collection. In a Tivoli environment, a
collection that contains objects representing resources
of any type.

GID. See group ID.

GIF. See graphical interchange format.

global description file (GDF). In the context of the
Application Management Specification (AMS), an
application description file that provides global
information about an application such as the application
name, the version identifier, and a free-form description
of the application. Each version of a management-ready
application is represented by one global description file.

GMFHS. See Graphic Monitor Facility host subsystem.

Graphical Data Display Manager (GDDM). In the
NetView Performance Monitor (NPM), an IBM licensed
program used in conjunction with the Presentation
Graphics Feature (PGF) to generate online graphs in
the NPM Graphic Subsystem.

graphical interchange format (GIF). A digital format
that is used to compress and transfer graphical
information over computer networks. For example, GIF
is a common format for graphical information on the
Internet.

graphical user interface (GUI). A type of computer
interface consisting of a visual metaphor of a real-world
scene, often of a desktop. Within that scene are icons,
representing actual objects, that the user can access
and manipulate with a pointing device. Contrast with
command line interface.

graphic communication server (GCS). The part of
the NetView Graphic Monitor Facility that manages LU
6.2 sessions used for data transport between (a) Tivoli
NetView for OS/390 and the server workstation and (b)
the server workstation and its client workstations.

graphic data server (GDS). The part of the NetView
Graphic Monitor Facility that receives network
management data from Tivoli NetView for OS/390,
maintains this data (except for dynamically created view
information), and correlates this data with views.

graphic monitor. The graphical user interface (GUI)
component of the NetView Graphic Monitor Facility.

Graphic Monitor Facility host subsystem (GMFHS).
In Tivoli NetView for OS/390, a component that
manages updates to the configuration and status of
resources displayed in NetView Graphic Monitor Facility
(NGMF) views.

graphics context (GC, Gcontext). In the Enhanced
X-Windows Toolkit, the storage area for various kinds of
graphics output, such as foreground pixels, background
pixels, line widths, and clipping regions. A graphics
context can be used only with drawables that have the
same root and the same depth as the graphics context.

graphics data file (GDF). A picture definition in a
coded format that is used internally by the Graphical

Glossary 115

Data Display Manager (GDDM) and, optionally, provides
the user with a lower level program interface than the
GDDM application programming interface (API).

group ID (GID). In the AIX operating system, a
number that corresponds to a specific group name. The
group ID can often be substituted in commands that
take a group name as a value.

group profile. In Tivoli User Administration, a profile
that a Tivoli administrator uses to define and modify
information about a group of users.

GTM. See general topology manager.

GUI. See graphical user interface.

H
hardcoded. Pertaining to software instructions that are
statically encoded and not intended to be altered.

hardcopy task (HCT). In Tivoli NetView for OS/390,
the subtask that controls the passage of data between
the NetView program and the hardcopy device.

hardware monitor. In Tivoli NetView for OS/390, the
component that helps identify and solve problems
related to physical network elements (as opposed to
logical sessions, which are managed by the session
monitor). Contrast with session monitor.

HCT. See hardcopy task.

heartbeat. In software products, a signal that one
entity sends to another to convey that it is still active.

home submap. In Tivoli NetView, the first submap that
appears when a map is opened. Each map has a home
submap. When new maps are created, the home
submap is the root submap.

hook. A location in a computer program where an
instruction is inserted for invoking a particular function.

host. (1) A computer that is connected to a network
(such as the Internet or an SNA network) and provides
an access point to that network. Also, depending on the
environment, the host may provide centralized control of
the network. The host can be a client, a server, or both
a client and a server simultaneously. (2) In a Tivoli
environment, a computer that serves as a managed
node for a profile distribution. (3) See host processor.

host name. In the Internet suite of protocols, the name
given to a machine. Sometimes, “host name” is used to
mean fully qualified domain name; other times, it is
used to mean the most specific subname of a fully
qualified domain name. For example, if
ralvm7.vnet.ibm.com is the fully qualified domain name,
either of the following may be considered the host
name:

v ralvm7.vnet.ibm.com

v ralvm7

host namespace profile. In Tivoli Enterprise software,
a profile that contains information about the list of hosts
and their properties, such as host IP addresses and
host aliases.

host processor. (1) A processor that controls all or
part of a user application network. (T) (2) In a network,
the processing unit in which the data communication
access method resides.

host transit time. In the NetView Performance
Monitor (NPM), the average time (in seconds) that all
transactions spend in the host. It includes both VTAM
and application time. It is also reported as an average
for the transactions originating at the logical unit for
which data collection is occurring.

HTML. See Hypertext Markup Language.

HTTP. See Hypertext Transfer Protocol.

hub. In a network, a point at which circuits are either
connected or switched. For example, in a star network,
the hub is the central node; in a star/ring network, it is
the location of wiring concentrators.

Hypertext Markup Language (HTML). A markup
language that is specified by an SGML document type
definition (DTD) and is understood by all Web servers.

Hypertext Transfer Protocol (HTTP). In the Internet
suite of protocols, the protocol that is used to transfer
and display hypertext documents.

I
IAB. See Internet Architecture Board.

ICMP. See Internet Control Message Protocol.

IDL. See Interface Definition Language.

IETF. See Internet Engineering Task Force.

immediate command. In Tivoli NetView for OS/390, a
command (such as GO, RESET, or LOGOFF) that
begins processing as soon as the operator enters it,
possibly preempting other ongoing processing. All other
commands are called ″regular commands″ and are
processed by a ″regular command processor.″ Regular
commands can run concurrently with other regular
commands and can be interrupted by immediate
commands. Most commands and all command lists are
regular commands.

IMS™. See Internet Management Specification.

indicator. In Tivoli Distributed Monitoring, an icon on
the Tivoli desktop that graphically displays the status of
a monitor that has been associated with it. The icon

116 Configuration Guide

resembles a thermometer, which the Tivoli administrator
can read to determine the status of the monitor.

indicator collection. In a Tivoli environment, a single
location from which a Tivoli administrator can determine
the status of monitors in different profiles, as well as
clear and reset alarmed states.

instance. In object-oriented programming, an object
created by instantiating a class.

instantiate. In object-oriented programming, to
represent a class abstraction with a concrete instance of
the class.

instrument. In application or system software, to use
monitoring functions to provide performance and other
information to a management system.

instrumentation. In application or system software,
either (a) monitoring functions that provide performance
and other information to a management system or (b)
the use of monitoring functions to provide performance
and other information to a management system.

intelligent agent. Software that monitors conditions or
actions on a network node and contains logic enabling it
to respond to these conditions or actions.

interactive chart utility (ICU). A utility provided by the
Graphical Data Display Manager (GDDM) to allow basic
graphic handling capability and a menu-driven
generation of different forms of graphs. ICU is a part of
the presentation graphics feature.

Interface Definition Language (IDL). In CORBA, a
declarative language that is used to describe object
interfaces, without regard to object implementation.

Internet Architecture Board (IAB). The technical
body that oversees (at a high level) the work of the
Internet Engineering Task Force (IETF). The IAB
approves the membership of the IETF.

Internet Control Message Protocol (ICMP). The
protocol used to handle errors and control messages in
the Internet Protocol (IP) layer. Reports of problems and
incorrect datagram destinations are returned to the
original datagram source.

Internet Engineering Task Force (IETF). The task
force of the Internet Architecture Board (IAB) that is
responsible for solving the short-term engineering needs
of the Internet. The IETF consists of numerous working
groups, each focused on a particular problem. Internet
standards are typically developed or reviewed by
individual working groups before they can become
standards.

Internet Management Specification (IMS). A draft
specification for an open standard for managing Internet
resources and services.

internet object. In Tivoli NetView, a node or a network
that can be accessed by the Internet Protocol (IP).

Internet Protocol (IP). In the Internet suite of
protocols, a connectionless protocol that routes data
through a network or interconnected networks. IP acts
as an intermediary between the higher protocol layers
and the physical network. However, this protocol does
not provide error recovery and flow control and does not
guarantee the reliability of the physical network.

Internet service provider (ISP). An organization that
provides access to the Internet.

Internetwork Packet Exchange (IPX). The network
protocol used to connect Novell’s servers, or any
workstation or router that implements IPX, with other
workstations. Although similar to the Internet Protocol
(IP), IPX uses different packet formats and terminology.

interprocess communication (IPC). The process by
which programs communicate data to each other and
synchronize their activities. Semaphores, signals, and
internal message queues are common methods of
interprocess communication.

intranet. A private network that integrates Internet
standards and applications (such as Web browsers)
with an organization’s existing computer networking
infrastructure.

IP. See Internet Protocol.

IPC. See interprocess communication.

IPX. See Internetwork Packet Exchange.

ISP. See Internet service provider.

IT. Information technology.

J
Java. An object-oriented programming language for
portable interpretive code that supports interaction
among remote objects. Java was developed and
specified by Sun Microsystems, Incorporated.

JavaBeans. A platform-independent, software
component technology for building reusable Java
components called “beans.” Once built, these beans
can be made available for use by other software
engineers or can be used in Java applications. Also,
using JavaBeans, software engineers can manipulate
and assemble beans in a graphical drag-and-drop
development environment.

Java Database Connectivity (JDBC). An application
programming interface (API) that has the same
characteristics as Open Database Connectivity (ODBC)
but is specifically designed for use by Java database
applications. Also, for databases that do not have a
JDBC driver, JDBC includes a JDBC to ODBC bridge,

Glossary 117

which is a mechanism for converting JDBC to ODBC; it
presents the JDBC API to Java database applications
and converts this to ODBC. JDBC was developed by
Sun Microsystems, Inc. and various partners and
vendors.

Java Management Application Programming
Interface (JMAPI). A specification proposed by Sun
Microsystems that defines a core set of application
programming interfaces for developing tightly integrated
system, network, and service management applications.
The application programming interfaces could be used
in diverse computing environments that encompass
many operating systems, architectures, and network
protocols.

JDBC. See Java Database Connectivity.

JMAPI. See Java Management Application
Programming Interface.

job. (1) A unit of work defined by a user that is to be
accomplished by a computer. Loosely, the term job is
sometimes used to refer to a representation of a job.
This representation may include a set of computer
programs, files, and control statements to the operating
system. (I) (A) (2) A Printing Systems Manager (PSM)
object that represents a request to print one or more
documents in a single printing session. (3) In a Tivoli
environment, a resource consisting of a task and its
preconfigured execution parameters. Among other
things, the execution parameters specify the set of
hosts on which the job is to execute.

JPEG. A standard format for storing compressed
true-color images. ″JPEG″ represents ″Joint
Photographic Experts Group,″ which is the name of the
committee that developed this standard format.

K
Kerberos. The security system of the Massachusetts
Institute of Technology’s (MIT’s) Project Athena. It uses
symmetric key cryptography to provide security services
to users in a network.

Kerberos master machine. In Kerberos, the host
machine on which the Kerberos database resides.

Kerberos master password. In Kerberos, the
password required to change or access the Kerberos
database.

Kerberos principal. In Kerberos, a service or user
that is known to the Kerberos system. See principal
name.

Kerberos realm. In Kerberos, a set of managed nodes
that share the same Kerberos database.

key. In computer security, a sequence of symbols that
is used with a cryptographic algorithm for encrypting or
decrypting data. See private key and public key.

keyword. (1) In programming languages, a lexical unit
that, in certain contexts, characterizes some language
construct; for example, in some contexts, IF
characterizes an if-statement. A keyword normally has
the form of an identifier. (I) (2) One of the predefined
words of an artificial language. (A) (3) A name or
symbol that identifies a parameter. (4) The part of a
command operand that consists of a specific character
string (such as DSNAME=). (5) See keyword operand.

keyword operand. (1) An operand that consists of a
keyword followed by one or more values (such as
DSNAME=HELLO). (2) Contrast with positional operand. (3)
See definition statement.

keyword parameter. A parameter that consists of a
keyword followed by one or more values.

L
LAN. See local area network.

LAN Network Manager (LNM). An IBM licensed
program that enables a user to manage and monitor
LAN resources from a central workstation.

LCCM. See link connection component manager.

LCSM. See link connection subsystem manager.

link connection component manager (LCCM). The
transaction program that manages the configuration of
the link connection.

link connection subsystem manager (LCSM). The
transaction program that manages the sequence of link
connection components that belong to a link connection.

Link Problem Determination Aid (LPDA®). A series
of procedures that are used to test the status of and to
control DCEs, the communication line, and the remote
device interface. These procedures, or a subset of
them, are implemented by host programs (such as Tivoli
NetView for OS/390 and VTAM), communication
controller programs (such as NCP), and IBM LPDA
DCEs. See LPDA-1 and LPDA-2.

LNM. See LAN Network Manager.

local area network (LAN). (1) A computer network
located on a user’s premises within a limited
geographical area. Communication within a local area
network is not subject to external regulations; however,
communication across the LAN boundary may be
subject to some form of regulation. (T) (2) A network
in which a set of devices are connected to one another
for communication and that can be connected to a
larger network.

118 Configuration Guide

local distribution. In a Tivoli environment, a
distribution to target machines in the same Tivoli
Management Region as the source machine.

local overrides. In a Tivoli environment, a feature of
all profile-based Tivoli applications—except for Tivoli
Software Distribution—that allows changes made at the
endpoint profile to override those in a distributed profile.

local registration file (LRF). In Tivoli NetView, a file
that provides information about an agent or daemon,
such as the name, the location of the executable code,
the names of processes dependent on the agent or
daemon, and details about the objects that an agent
manages.

local topology database. A database in an APPN or
LEN node containing an entry for each transmission
group (TG) having at least one end node for an
endpoint. In an end node, the database has one entry
for each TG connecting to the node. In a network node,
the database has an entry for each TG connecting the
network node to an end node. Each entry describes the
current characteristics of the TG that it represents. A
network node has both a local and a network topology
database while an end node has only a local topology
database.

lock. The means by which integrity of data is ensured
by preventing more than one user from accessing or
changing the same data or object at the same time.

logged-on operator. (1) In Tivoli NetView for OS/390,
an operator station task that requires a terminal and a
logged-on user. (2) Contrast with autotask.

LPDA. See Link Problem Determination Aid.

LPDA-1. The first version of the Link Problem
Determination Aid (LPDA) command set. LPDA-1 is not
compatible with LPDA-2.

LPDA-2. The second version of the Link Problem
Determination Aid (LPDA) command set. LPDA-2
provides all of the functions of LPDA-1; it also supports
commands such as the following:

v DCE configuration

v Dial

v Set transmit speed

v Commands to operate a contact that can control
external devices.

LRF. See local registration file.

LUC session. Communication, using LU type 0
protocols, between the LUC tasks of two Tivoli NetView
for OS/390 programs. This communication is similar to
an LU 6.2 conversation.

LUC task. A Tivoli NetView for OS/390 task, denoted
by the NetView domain ID concatenated with the literal

“LUC” (for example, CNM01LUC), that serves as the
endpoint of an LUC session.

LU group. (1) In the NetView Performance Monitor
(NPM), a file containing a list of related or unrelated
logical units. The LU group is used to help simplify data
collection and analysis. (2) In Tivoli NetView for OS/390,
a grouping of logical units according to some affinity,
such as their link to the same VTAM generic resource
or VTAM USERVAR.

LU 6.2 verb. A syntactical unit in the LU 6.2
application programming interface representing an
operation.

M
macroinstruction. (1) An instruction in a source
language that is to be replaced by a defined sequence
of instructions in the same source language and that
may also specify values for parameters in the replaced
instructions. (T) (2) In assembler programming, an
assembler language statement that causes the
assembler to process a predefined set of statements
called a macro definition. The statements normally
produced from the macro definition replace the
macroinstruction in the program.

managed node. (1) In Internet communications, a
workstation, server, or router that contains a network
management agent. In the Internet Protocol (IP), the
managed node usually contains a Simple Network
Management Protocol (SNMP) agent. (2) In a Tivoli
environment, any managed resource on which the Tivoli
Management Framework is installed.

managed object. (1) A component of a system that
can be managed by a management application. (2) The
systems management view of a resource that can be
managed through the use of systems management
protocols.

managed resource. In a Tivoli environment, any
hardware or software entity (machine, service, system,
or facility) that is represented by a database object and
an icon on the Tivoli desktop. Managed resources must
be a supported resource type in a policy region and are
subject to a set of rules. Managed resources include,
but are not limited to, managed nodes, task libraries,
monitors, profiles, and bulletin boards.

management by subscription. In a Tivoli
environment, the concept of managing network
resources by creating sets of profiles and distributing
the profiles (through profile managers) to physical
entities (Tivoli resources), called subscribers.

Management Information Base (MIB). (1) A collection
of objects that can be accessed by means of a network
management protocol. (2) A definition for management
information that specifies the information available from
a host or gateway and the operations allowed. (3) In

Glossary 119

OSI, the conceptual repository of management
information within an open system. (4) See MIB module.

Management Information Format (MIF). The Desktop
Management Interface (DMI) specification that defines
the syntax for describing management information about
the hardware and software components that can be
installed on a computer system.

management module. In a Tivoli environment, a file
that contains the management information and
instrumentation for enabling a particular application or
business system to be managed by Tivoli management
software. This file may be in the form of a Tivoli install
image or an application management package. Types of
management modules include base modules, Tivoli
GEM modules, and Tivoli Plus modules. See Tivoli
Module Builder and Tivoli Module Designer.

management region. In Tivoli NetView, the set of
managed objects on a particular map that defines the
extent of the network that is being actively managed.
The management region may vary across maps.

management services (MS). (1) One of the types of
network services in control points (CPs) and physical
units (PUs). Management services are the services
provided to assist in the management of SNA networks,
such as problem management, performance and
accounting management, configuration management,
and change management. (2) Services that assist in the
management of systems and networks in areas such as
problem management, performance management,
business management, operations management,
configuration management, and change management.

management services focal point (MSFP). For any
given management services discipline (for example,
problem determination or response time monitoring), the
control point that is responsible for that type of network
management data for a sphere of control. This
responsibility may include collecting, storing, or
displaying the data, or all of these. (For example, a
problem determination focal point is a control point that
collects, and that may store or display, problem
determination data.)

manager. (1) In systems management, a user that, for
a particular interaction, has assumed a manager role.
(2) An entity that monitors or controls one or more
managed objects by (a) receiving notifications regarding
the objects and (b) requesting management operations
to modify or query the objects. (3) A system that
assumes a manager role.

manager role. In systems management, a role
assumed by a user where the user is capable of issuing
management operations and of receiving notifications.

man page. In UNIX systems, one page of online
documentation. ″Man page″ is an abbreviation for
″manual page.″ Each UNIX command, utility, and library

function has an associated man page that can be
viewed by entering this command: man command name.

map. In Tivoli NetView, a database represented by a
set of related submaps that provide a graphical and
hierarchical presentation of a network and its systems.

mapper. In Tivoli NetView for OS/390, a function that
records errors from resources attached to a
communication controller or from certain
channel-attached devices.

marshall. To copy data into a remote procedure call
(RPC) packet. Stubs perform marshalling. Contrast with
unmarshall.

MCSL. See Monitoring Collection Specification
Language.

MDist. Multiplexed distribution. In a Tivoli environment,
a service that enables efficient distribution of large
amounts of data across complex networks.

menu bar. (1) The area near the top of a window,
below the title bar and above the rest of the window,
that contains choices that provide access to other
menus. (2) In the AIX operating system, a rectangular
area at the top of the client area of a window that
contains the titles of the standard pull-down menus for
that application.

message style. In Tivoli Distributed Monitoring, the
amount and format of information presented by certain
monitors.

method. (1) In object-oriented design or programming,
the software that implements the behavior specified by
an operation. (2) In Tivoli NetView for OS/390, a
program that runs in the Resource Object Data
Manager (RODM) address space and communicates
with RODM using an application programming interface
(API). Methods are usually small programs that perform
specific tasks on data in the data cache.

MIB. See Management Information Base.

MIB application program. A systems management
application program used to monitor network devices.

MIB module. In the Simple Network Management
Protocol (SNMP), a collection of objects relating to a
common management area. See MIB variable.

MIB object. See MIB variable.

MIB tree. In the Simple Network Management Protocol
(SNMP), the structure of the Management Information
Base (MIB).

MIB variable. In the Simple Network Management
Protocol (SNMP), a specific instance of data defined in
a MIB module.

120 Configuration Guide

MIB view. In the Simple Network Management
Protocol (SNMP), the collection of managed objects,
known to the agent, that is visible to a particular
community.

MIB walking. In the Simple Network Management
Protocol (SNMP), a technique of looking for
Management Information Base (MIB) tree information
when it is presented in a hierarchical format.

Mid-Level Manager (MLM). In Tivoli NetView, the
component that performs certain systems and network
management tasks (for example, polling, status
monitoring, and node discovering) for a defined set of
Simple Network Management Protocol (SNMP) devices
in the network, thereby offloading these tasks from Tivoli
NetView.

MIF. See Management Information Format.

MIPS. A measure of computer processing performance
that is equal to one million instructions per second.

MLM. See Mid-Level Manager.

MLM Configuration Application. A Tivoli NetView
feature that is used to configure the Mid-Level Manager
(MLM).

MNPS. See multinode persistent session.

module. See management module.

monitor. (1) A device that observes and records
selected activities within a data processing system for
analysis. Possible uses are to indicate significant
departure from the norm, or to determine levels of
utilization of particular functional units. (T) (2)
Software or hardware that observes, supervises,
controls, or verifies operations of a system. (A) (3)
Software that monitors specific applications or the
systems on which the applications rely. Monitors
typically monitor information such as available disk
space or application errors and compare the information
to defined thresholds. When thresholds are exceeded,
either system or network administrators can be notified,
or an automated response can be performed. (4) In the
NetView Graphic Monitor Facility, to open a view that
can receive status changes from Tivoli NetView for
OS/390. Problem determination and correction can be
performed directly from the view. Contrast with browse.

monitoring collection. In Tivoli Distributed Monitoring,
a collection of predefined monitors. Several monitoring
collections are packaged with Tivoli Distributed
Monitoring, but Tivoli administrators can use
custom-developed and third-party monitoring collections
as well. See custom monitor.

Monitoring Collection Specification Language
(MCSL). A proprietary programming language that is
owned by Tivoli Systems Inc. and is used to define
monitoring collections for Tivoli Distributed Monitoring.

MPM. See MultiPlatform Manager.

MS. See management services.

MSFP. See management services focal point.

multinode persistent session (MNPS). An LU-LU
session that is retained after the failure of VTAM, the
operating system, or the hardware.

MultiPlatform Manager (MPM). An application
programming interface (API) that was developed by a
group of leading technology vendors, including Tivoli
Systems Inc., and that enables disparate management
systems to interoperate with each other. Tivoli LAN
Access and Tivoli IT Director support this API, which
means that Tivoli Enterprise software or Tivoli IT
Director can provide IT managers with unifying,
centralized control over disconnected management
resources.

Multiple Virtual Storage/Operator Communication
Control Facility (MVS/OCCF). A facility that intercepts
messages from the MVS supervisor. Tivoli NetView for
OS/390 and MVS/OCCF help a network operator control
multiple MVS systems from a central site.

multiplexed distribution (MDist). See MDist.

MultiSystem Manager. In Tivoli NetView for OS/390,
the component that manages non-SNA resources, such
as those in IP networks, NetWare networks, LAN
Network Manager networks, and LAN NetView
Management Utilities networks.

multitiered application. An application that is
deployed on more than one physical machine. A
client/server application is a common multitiered
application in which there are two tiers: the client tier
(for example, the presentation and the graphical user
interface) and the server tier (for example, the service
and the database).

MVS/OCCF. See Multiple Virtual Storage/Operator
Communication Control Facility.

MVS system symbol. In a sysplex where a customer
runs a copy of a given program (such as CICS or Tivoli
NetView for OS/390) on more than one MVS image, a
symbol that the customer can use to write generic JCL
for use by each instance of the given program. An MVS
system symbol behaves like a program variable that the
sysplex resolves at execution time with the value that is
appropriate to the MVS image on which the program
instance is running.

N
name registry. In a Tivoli environment, a name
service consisting of a two-dimensional table that maps

Glossary 121

resource names to resource identifiers and
corresponding information within a Tivoli Management
Region.

name translation. In SNA network interconnection, the
conversion of logical unit names, logon mode table
names, and class-of-service names used in one network
to equivalent names for use in another network. This
function can be provided through Tivoli NetView for
OS/390 and invoked by a gateway system services
control point (SSCP) when necessary. See alias name.

NAT. See network address translation.

navigate. In the NetView Graphic Monitor Facility, to
move between levels in the view hierarchy.

navigation tree. In Tivoli NetView, a component of the
graphical user interface (GUI) that displays a hierarchy
of open submaps illustrating the parent-child
relationship. The navigation tree enables the network
operator to determine which submaps are currently
open and to close, restore, or raise the windows that
contain submaps.

NCCF. In Tivoli NetView for OS/390, a command that
starts the NetView command facility. Also, the use of the
abbreviation “NCCF” indicates that various panels and
functions are part of the command facility.

nested file package. In Tivoli Software Distribution, a
file package that is added as an entry to another file
package.

NetBIOS. (1) Network Basic Input/Output System. A
standard interface to networks, IBM personal computers
(PCs), and compatible PCs, that is used on LANs to
provide message, print-server, and file-server functions.
Application programs that use NetBIOS do not need to
handle the details of LAN data link control (DLC)
protocols. (2) See Basic Input/Output System.

NetView. See Tivoli NetView and Tivoli NetView for
OS/390.

NetView AutoBridge. In Tivoli Service Desk for
OS/390, an application interface to Tivoli NetView for
OS/390 that works with the NetView Bridge Adapter to
update the Tivoli Service Desk for OS/390 database
and to automate network monitoring. The NetView
AutoBridge receives data from NetView alerts,
messages, and other applications and uses this data to
build and perform Tivoli Service Desk for OS/390
transactions.

NetView Bridge. In Tivoli NetView for OS/390, a set of
application programming interfaces (APIs) that enable
Tivoli NetView for OS/390 to interact with various types
of databases in the OS/390 environment.

NetView Bridge Adapter. In Tivoli Service Desk for
OS/390, a feature that provides a connection between
the NetView Bridge and the Tivoli Service Desk for

OS/390 database. The NetView Bridge Adapter enables
the Tivoli Service Desk for OS/390 to act as a NetView
database server and works with the NetView AutoBridge
or other NetView applications to access problem
records logged in the Tivoli Service Desk for OS/390
database.

NetView command authorization table. In Tivoli
NetView for OS/390, a set of entries that define an
operator’s authorization for accessing commands and
(depending on the level of granularity that an enterprise
chooses) command keywords and keyword values.

NetView command list language. In Tivoli NetView
for OS/390, an interpretive language that is unique to
the NetView program and that is used to write NetView
command lists in environments where REXX is not
supported.

NetView Graphic Monitor Facility (NGMF). In Tivoli
NetView for OS/390, a function that provides the
network operator with a graphical topological
representation of a network and allows the operator to
manage the network interactively.

NetView help desk. In Tivoli NetView for OS/390, an
online information facility that guides the help desk
operator through problem management procedures.

NetView Installation and Administration Facility/2
(NIAF/2). An OS/2-based tool that allows new users of
Tivoli NetView for OS/390 or users migrating from a
prior release to install, administer, and maintain Tivoli
NetView for OS/390. NIAF/2 replaces the Interactive
System Productivity Facility-based (ISPF-based)
NetView Installation Facility.

NetView management console. See topology
console.

NetView management console server. See topology
server.

NetView-NetView task (NNT). In Tivoli NetView for
OS/390, the task under which a cross-domain NetView
operator session runs. See operator station task.

NetView Performance Monitor (NPM). An IBM
licensed program that collects, monitors, analyzes, and
displays data relevant to the performance of a VTAM
telecommunication network. It runs as an online VTAM
application program.

NetWare managed site. In a Tivoli environment, a
resource that represents (a) a Novell NetWare server on
which the Tivoli NetWare repeater (TNWR) is installed
and (b) one or more clients. A NetWare managed site
enables profiles to be distributed through the NetWare
server to one or more specified client PCs using either
TCP/IP or IPX.

network address translation (NAT). In a firewall, the
conversion of secure IP addresses to external

122 Configuration Guide

registered addresses. This enables communication with
external networks but masks the IP addresses that are
used inside the firewall.

network class. In Tivoli NetView, an object class used
for symbols that represent compound objects that may
contain objects such as hosts and network devices.
Contrast with connector class.

network computing. The use of a scalable distributed
computing infrastructure that encompasses the key
elements of today’s networking technologies, such as
systems and network management; the Internet and
intranets; clients and servers; application programs;
databases; transaction processing; and various
operating systems and communication protocols.

Network File System (NFS). A protocol developed by
Sun Microsystems, Incorporated, that allows any host in
a network to mount another host’s file directories. Once
mounted, the file directory appears to reside on the
local host.

network gateway accounting (NGA). The NetView
Performance Monitor (NPM) subsystem that receives
traffic information from the gateway NCP for sessions
that flow throughout a network.

Network Information Center (NIC). In Internet
communications, local, regional, and national groups
throughout the world who provide assistance,
documentation, training, and other services to users.

Network Information Services (NIS). A set of UNIX
network services (for example, a distributed service for
retrieving information about the users, groups, network
addresses, and gateways in a network) that resolve
naming and addressing differences among computers in
a network.

network log. A file that contains (a) messages,
commands, and command procedures that have been
processed by Tivoli NetView for OS/390 and (b) output
resulting from commands, command procedures, and
other activity occurring within Tivoli NetView for OS/390.

network management gateway (NMG). A gateway
between Tivoli NetView for OS/390, which is the SNA
network management system, and the network
management function of one or more non-SNA
networks.

network management vector transport (NMVT). A
management services request/response unit (RU) that
flows over an active session between physical unit
management services and control point management
services (SSCP-PU session).

Network News Transfer Protocol (NNTP). In the
Internet suite of protocols, a protocol for the distribution,
inquiry, retrieval, and posting of news articles that are
stored in a central database.

network session accounting (NSA). The NetView
Performance Monitor (NPM) subsystem that receives
session accounting information from the NCP for
sessions that flow throughout a network.

network topology database. The representation of
the current connectivity between the network nodes
within an APPN network. It includes (a) entries for all
network nodes and the transmission groups
interconnecting them and (b) entries for all virtual
routing nodes to which network nodes are attached.

NFS. See Network File System.

NFS client. A program or system that mounts remote
file directories from another host called a Network File
System (NFS) server.

NFS server. A program or system that allows
authorized remote hosts called Network File System
(NFS) clients to mount and access its local file
directories.

NGA. See network gateway accounting.

NGMF. See NetView Graphic Monitor Facility.

NIAF/2. See NetView Installation and Administration
Facility/2.

NIC. See Network Information Center.

NIS. See Network Information Services.

NLDM. In Tivoli NetView for OS/390, a command that
starts the session monitor. Also, the use of the
abbreviation “NLDM” indicates that various panels and
functions are part of the session monitor.

NMG. See network management gateway.

NMVT. See network management vector transport.

NNT. See NetView-NetView task.

NNTP. See Network News Transfer Protocol.

non-generic alert. In SNA management services
(SNA/MS), alert information that is encoded such that it
conveys to the receiver the set of screens that should
be displayed for the network operator when the alert is
received. The use of non-generic alerts requires that the
receiver recognize and understand each unique
problem for which an alert is sent. Contrast with generic
alert.

NOS. Network operating system.

notice. In a Tivoli environment, a message generated
by a systems management operation that contains
information about an event or the status of an
application. Notices are stored in notice groups. See
bulletin board.

Glossary 123

notice group. In a Tivoli environment, an application-
or operation-specific container that stores and displays
notices pertaining to specific Tivoli functions. The Tivoli
bulletin board is comprised of notice groups. A Tivoli
administrator can subscribe to one or more notice
groups; the administrator’s bulletin board contains only
the notices that reside in a notice group to which the
administrator is subscribed.

notification. (1) An unscheduled, spontaneously
generated report of an event that has occurred. (2) In
systems management, information emitted by a
managed object relating to an event that has occurred
within the managed object, such as a threshold violation
or a change in configuration status.

NPALU. In the NetView Performance Monitor (NPM),
the virtual logical unit generated in an NCP with which
the network subsystem communicates.

NPDA. In Tivoli NetView for OS/390, a command that
starts the hardware monitor. Also, the use of the
abbreviation “NPDA” indicates that various panels and
functions are part of the hardware monitor.

NPM. See NetView Performance Monitor.

NSA. See network session accounting.

NT repeater. In a Tivoli environment, the first Windows
NT machine on which the Tivoli Remote Execution
Service is installed. Using fanout, the NT repeater
distributes the Tivoli Remote Execution Service to all
other NT clients during the client installation process.

null resource. In the NetView Graphic Monitor Facility,
an object that is used only as an aid in formatting and
drawing a view. A null resource always shows the status
“unknown.”

O
object. (1) In object-oriented design or programming, a
concrete realization of a class that consists of data and
the operations associated with that data. (2) An item
that a user can manipulate as a single unit to perform a
task. An object can appear as text, an icon, or both. (3)
In Tivoli NetView for OS/390, the part of a NetView
command that follows the verb. The object describes
where the action of the verb is to occur.

object dispatcher. See object request broker.

object identifier (OID). An administratively assigned
data value of the type defined in abstract syntax
notation 1 (ASN.1).

Object Management Group (OMG). A non-profit
consortium whose purpose is to promote object-oriented
technology and the standardization of that technology.
The Object Management Group was formed to help

reduce the complexity, lower the costs, and hasten the
introduction of new software applications.

object path. In a Tivoli environment, an absolute or
relative path to a Tivoli object, similar to paths in file
systems.

object reference. In a Tivoli environment, the object
identifier (OID) given to an object during its creation.

object registration service (ORS). In Tivoli NetView,
a component that creates and maintains a global
directory of object managers, their locations, and their
protocols. The postmaster daemon uses this directory to
route messages and provide location transparency for
managers and agents.

object request broker (ORB). In object-oriented
programming, software that serves as an intermediary
by transparently enabling objects to exchange requests
and responses. See Common Object Request Broker
Architecture.

ODBC. See Open Database Connectivity.

OID. See object identifier.

OMG. See Object Management Group.

Open Database Connectivity (ODBC). A standard
application programming interface (API) for accessing
data in both relational and nonrelational database
management systems. Using this API, database
applications can access data stored in database
management systems on a variety of computers even if
each database management system uses a different
data storage format and programming interface. ODBC
is based on the call level interface (CLI) specification of
the X/Open SQL Access Group and was developed by
Digital Equipment Corporation (DEC), Lotus®,
Microsoft®, and Sybase. Contrast with Java Database
Connectivity.

operation. In object-oriented design or programming,
a service that can be requested at the boundary of an
object. Operations include modifying an object or
disclosing information about an object.

operations and administration. The Tivoli
management discipline that addresses the automation
of activities that ensure the operational integrity and
reliability of a network computing system. See
availability management, deployment management, and
security management.

operator. A person or a program that manages
activities that are controlled by a specific computer
program.

operator profile. In Tivoli NetView for OS/390, a
specification of the resources and activities over which a
network operator has control. The profile is stored in a
file that is activated when the operator logs on.

124 Configuration Guide

operator station task (OST). In Tivoli NetView for
OS/390, the task that establishes and maintains the
online session with the network operator. There is one
operator station task for each network operator who
logs on to Tivoli NetView for OS/390. See
NetView-NetView task.

ORB. See object request broker.

ORS. See object registration service.

oserv. The name of the object request broker used by
the Tivoli environment. Oserv runs on the TMR server
and each TMR client.

OST. See operator station task.

P
package definition file (PDF). In Tivoli IT Director, an
ASCII text file that contains predefined workstation,
sharing, and inventory property settings for a file
package.

packet. In data communication, a sequence of binary
digits, including data and control signals, that is
transmitted and switched as a composite whole. The
data, control signals, and, possibly, error control
information are arranged in a specific format. (I)

parameter. (1) A variable that is given a constant
value for a specified application and that may denote
the application. (I) (A) (2) In Common User Access
(CUA®) architecture, a variable used in conjunction with
a command to affect its result. (3) An item in a menu for
which the user specifies a value or for which the system
provides a value when the menu is interpreted. (4) Data
passed to a program or procedure by a user or another
program, namely as an operand in a language
statement, as an item in a menu, or as a shared data
structure. (5) In Tivoli NetView for OS/390, a part of a
command’s object. (6) See keyword and keyword
parameter.

parent process. In the UNIX operating system, a
process that creates other processes. See child process
and fork.

parent resource. In the NetView Graphic Monitor
Facility, a resource that has one or more child resources
below it in a hierarchy.

PassTicket. In RACF® secured sign-on, a dynamically
generated, random, one-time-use, password substitute
that a workstation or other client can use to sign on to
the host rather than sending a RACF password across
the network.

PassTicket application key. In RACF secured
sign-on, an encryption key that is used in the creation

and evaluation of a PassTicket. The PassTicket
application key is sometimes referred to as the “secured
sign-on application key.”

patch. A code change that is sent to the owners of a
software product license after the release of a product.
The licensees can then apply this code change to
correct a reported problem.

path. (1) A list of one or more directory names and an
object name (such as the name of a file) that are
separated by an operating system-specific character,
such as the slash (/) in UNIX operating systems, the
backslash (\) in Windows® operating systems, and the
semicolon (;) in OS/2 operating systems. The directory
names detail the path to follow, in left-to-right order, to
locate the object within the file system. This concept of
path is also known as the “pathname.” (2) A list of
directory names, usually separated by a colon (:), that
are to be searched (in left-to-right order) to locate an
object. This concept of path is also known as the
“search path.” (3) See absolute path, directory, relative
path, root directory, and working directory.

pathname. See path.

path test. A test provided by Tivoli NetView for
OS/390 that enables a network operator to determine
whether a path is available between two LUs that are
currently in session.

pattern-matching character. A special character such
as an asterisk (*) or a question mark (?) that can be
used to represent one or more characters. Any
character or set of characters can replace a
pattern-matching character.

PC agent. In a Tivoli environment, software installed
on a client PC that enables Tivoli operations to execute
on the PC. See PC managed node.

PC managed node. In a Tivoli environment, an object
that represents a client PC. The Tivoli Management
Framework can communicate with the client PC only if
the PC agent is installed on the PC. Client PCs are
most often referred to as PC managed nodes.

PDF. (1) See package definition file. (2) See Portable
Document Format.

performance class. In Tivoli NetView for OS/390, a
description of an objective or commitment of
performance. It consists of a performance class name,
boundary definitions, response time definition, response
time ranges, and response time percentage objectives.
Sessions may be assigned performance classes.

persistent LU-LU session. See persistent session.

persistent session. (1) In Tivoli NetView for OS/390,
a network management session that remains active
even though there is no activity on the session for a
specified period of time. (2) An LU-LU session that

Glossary 125

VTAM retains after the failure of a VTAM application
program. Following the application program’s recovery,
the application program restores or terminates the
session. This session is sometimes referred to as a
“single-node persistent session.” See multinode
persistent session.

pipeline. (1) A serial arrangement of processors or a
serial arrangement of registers within a processor. Each
processor or register performs part of a task and passes
results to the next processor; several parts of different
tasks can be performed at the same time. (2) To
perform processes in series. (3) To start execution of an
instruction sequence before the previous instruction
sequence is completed to increase processing speed.
(4) In Tivoli NetView for OS/390, a message processing
procedure that consists of one or more programs known
as stages.

pixel map. (1) A three-dimensional array of bits. A
pixel map can be thought of as a two-dimensional array
of pixels, with each pixel being a value from zero to 2 to
the power N -1, where N is the depth of the pixel map.
(2) In the X Window System, a data type to which icons,
originally created as bitmaps, are converted.

pixmap. See pixel map.

platform. An ambiguous term that may refer to the
hardware, the operating system, or a combination of the
hardware and the operating system on which software
programs run.

plex. A Printing Systems Manager (PSM) attribute
used for defining the capability of a printer to support
different placements of output images on a medium. For
example, the plex attribute could specify whether the
printer is to support simplex or tumble mode.

Plus module. See Tivoli Plus module.

policy. In a Tivoli environment, a set of rules that are
applied to managed resources. A specific rule in a policy
is referred to as a “policy method.”

policy region. In a Tivoli environment, a group of
managed resources that share one or more common
policies. Tivoli administrators use policy regions to
model the management and organizational structure of
a network computing environment. The administrators
can group similar resources, define access to and
control the resources, and associate rules for governing
the resources. The policy region contains resource
types and the list of resources to be managed. A policy
region is represented on the Tivoli desktop by an icon
that resembles a capitol building (dome icon). When a
Tivoli Management Region (TMR) is created, a policy
region with the same name is also created. In this case,
the TMR has only one policy region. However, in most
cases, a Tivoli administrator creates other policy regions
and subregions to represent the organization of the

TMR. A TMR addresses the physical connectivity of
resources whereas a policy region addresses the logical
organization of resources.

policy subregion. In a Tivoli environment, a policy
region created or residing in another policy region.
When a policy subregion is created, it initially uses the
resource and policy properties of the parent policy
region. The Tivoli administrator can later change or
customize these properties to reflect the specific needs
and differences of the subregion.

polling. (1) On a multipoint connection or a
point-to-point connection, the process whereby data
stations are invited, one at a time, to transmit. (I) (2)
Interrogation of devices for such purposes as to avoid
contention, to determine operational status, or to
determine readiness to send or receive data. (A) (3)
In network management, the process by which a
manager interrogates one or more managed nodes at
regular intervals.

populate. In a Tivoli environment, to fill a profile with
information that is to be distributed to the subscribing
managed resources.

port. To modify a computer program to enable it to run
on a different platform.

Portable Document Format (PDF). A standard
specified by Adobe Systems, Incorporated, for the
electronic distribution of documents. PDF files are
compact; can be distributed globally via e-mail, the
Web, intranets, or CD-ROM; and can be viewed with
the Acrobat Reader, which is software from Adobe
Systems that can be downloaded at no cost from the
Adobe Systems home page.

portmapper. A program that maps client programs to
the port numbers of server programs. Portmapper is
used with remote procedure call (RPC) programs.

positional operand. (1) An operand in a language
statement that has a fixed position. (2) Contrast with
keyword operand. (3) See definition statement.

postmaster. In Tivoli NetView, a process (daemon)
that directs network management information between
multiple application programs and agents running
concurrently. The postmaster determines the route by
using specified addresses or a routing table that is
configured in the object registration service.

PPI. See program-to-program interface.

presentation graphics feature (PGF). In the NetView
Performance Monitor (NPM), a feature used in
conjunction with the Graphical Data Display Manager
(GDDM) to generate online graphs in the NPM graphic
subsystem.

126 Configuration Guide

presentation services command processor (PSCP).
In Tivoli NetView, a facility that processes requests from
a user terminal and formats displays to be presented at
the user terminal.

primary database. In Tivoli NetView for OS/390, the
main database provided to the NetView user for
recording error data. See secondary database.

primary POI task (PPT). In Tivoli NetView for OS/390,
the subtask that processes all unsolicited messages that
are received from the VTAM program operator interface
(POI) and delivers them to the controlling operator or to
the command processor. The PPT also processes (a)
the initial command that is specified to execute when
NetView is initialized and (b) timer request commands
that are scheduled to execute under the PPT.

primary window. In OSF/Motif, the top-level window
in an application program that can be minimized or
represented by an icon. See submap window.

principal name. (1) In Kerberos, the name by which
the Kerberos principal is identified. The principal name
consists of three parts: a service or user name, an
instance name, and a realm name. (2) In a Tivoli
environment, an operating system user ID that is
associated with a Tivoli administrator.

principal password. In Kerberos, the password that
corresponds to the principal name. This password is
used to authenticate services and users to each other.

print file document. A Printing Systems Manager
(PSM) object that represents text or data to be printed
by a job. Contrast with print resource document.

Printing Systems Manager (PSM). An IBM licensed
program that applies print administration and
management technology to a cross-platform,
client/server print system. PSM provides a set of (a)
printing functions for submitting and controlling print jobs
and (b) systems management and operator functions to
control print spoolers and print supervisors. PSM is
based on the Palladium distributed print system.

print resource document. A Printing Systems
Manager (PSM) object that represents a resource, such
as graphics or fonts, used by a job to print a print file
document.

Print Services Facility™ (PSF) for AIX. An IBM
licensed printer driver program that produces printer
commands from the data sent to it.

private key. In computer security, a key that is known
only to its owner. Contrast with public key. See public
key cryptography.

profile. In a Tivoli environment, a container for
application-specific information about a particular type of
resource. A Tivoli application specifies the template for

its profiles; the template includes information about the
resources that can be managed by that Tivoli
application.

A profile is created in the context of a profile manager;
the profile manager links a profile to the Tivoli resource
(for example, a managed node) that uses the
information contained in the profile. A profile does not
have any direct subscribers.

profile manager. In a Tivoli environment, a container
for profiles that links the profiles to a set of resources,
called “subscribers.” A profile manager can contain (a)
profiles of multiple types or (b) multiple profiles of the
same type. Tivoli administrators use profile managers to
organize and distribute profiles. A profile manager is
created in the context of a policy region and is a
managed resource in a policy region. See subscription
list.

program-to-program interface (PPI). In Tivoli
NetView for OS/390, a facility that allows user programs
to send data buffers to or receive data buffers from
other user programs. It also allows system and
application programs to send alerts to the NetView
hardware monitor.

prototype profile. In a Tivoli environment, a model
profile from which a Tivoli administrator can create other
profiles, often by cloning the prototype profile.

proxy endpoint. In Tivoli Distributed Monitoring, a
representation for an entity (such as a network device
or a host) that functions as a subscriber for Tivoli
Distributed Monitoring profiles. A Tivoli administrator
associates each proxy endpoint with a managed node;
several proxy endpoints can be associated with a single
managed node.

PSCP. See presentation services command processor.

PSF. Print Services Facility. See Print Services Facility
for AIX.

PSM. See Printing Systems Manager.

public key. In computer security, a key that is made
available to everyone. Contrast with private key. See
public key cryptography.

public key cryptography. In computer security,
cryptography in which public keys and private keys are
used for encryption and decryption.

pull. A network operation that initiates an action by
requesting the action from a resource. Contrast with
push.

push. A network operation that sends information to
resources. Contrast with pull.

Glossary 127

Q
query. In a Tivoli environment, a combination of
statements that are used to search the configuration
repository for systems that meet certain criteria.

query library. In a Tivoli environment, a facility that
provides a way to create and manage Tivoli queries.

R
RACF. See Resource Access Control Facility.

RACF secured sign-on. In the Resource Access
Control Facility (RACF), a function that enables
workstations and other clients to sign on to the host and
communicate in a secure way without having to send
RACF passwords across the network. See PassTicket
and PassTicket application key.

RDBMS. See relational database management
system.

RDBMS Interface Module (RIM). In the Tivoli
Management Framework, the module in the distributed
object database that contains information about the
installation of the relational database management
system (RDBMS).

real object. In the NetView Graphic Monitor Facility,
an object that represents an actual resource. See
aggregate object.

real resource. (1) In VTAM, a resource identified by
its real name and its real network identifier. (2) In the
NetView Graphic Monitor Facility, an individual network
resource represented by a real object.

recommended action. The procedures that Tivoli
NetView for OS/390 recommends for determining and
correcting the causes of network problems.

recording filter. In Tivoli NetView for OS/390, the
function that determines which events, statistics, and
alerts are stored in a database.

reference implementation. An implementation by
which other implementations are judged for
conformance to a standard or are tested for
interoperability.

reference model. In the context of Tivoli software, the
model configuration for a system or set of systems that
is used to maintain consistent configurations in a
distributed environment. In Tivoli Inventory, reference
models are created in the configuration repository.

registered name. In a Tivoli environment, the name by
which a particular resource is registered with the name
registry when it is created.

registration file. See application registration file, field
registration file, local registration file, and symbol
registration file.

regular command. See immediate command.

relation. (1) In a relational database, a set of entity
occurrences that have the same attributes. (T) (2)
The comparison of two expressions to see if the value
of one is equal to, less than, or greater than the value
of the other. (3) In a relational database, a table that
identifies entities and their attributes.

relational database. A database in which the data are
organized and accessed according to relations. (T)

relational database management system (RDBMS).
A collection of hardware and software that organizes
and provides access to a relational database.

relative path. A path that begins with the working
directory. Contrast with absolute path.

remote distribution. In a Tivoli environment, a
distribution to target machines in a connected Tivoli
Management Region.

remote host. Any host on a network except the host
at which a particular operator is working.

Remote Operations Service (ROPS). In
Communications Server, an application program on a
client workstation that processes commands that are
issued by Tivoli NetView for OS/390 through the Service
Point Application (SPA) Router, thus enabling Tivoli
NetView for OS/390 to manage distributed networks and
application programs.

remote procedure call (RPC). (1) A facility that a
client uses to request the execution of a procedure call
from a server. This facility includes a library of
procedures and an external data representation. (2) A
client request to a service provider located in another
node.

repeater. (1) A node of a local area network; a device
that regenerates signals in order to extend the range of
transmission between data stations or to interconnect
two branches. (T) (2) See repeater site.

repeater range. In a Tivoli environment, the Tivoli
clients that receive data from the repeater site.

repeater site. In a Tivoli Management Region, a
managed node that is configured with the MDist feature.
A repeater site receives a single copy of data and
distributes it to the next tier of clients.

requester. See client.

Request for Comments (RFC). In Internet
communications, the document series that describes a

128 Configuration Guide

part of the Internet suite of protocols and related
experiments. All Internet standards are documented as
RFCs.

resource. (1) Any facility of a computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs. (2) In Tivoli NetView for OS/390, any
hardware or software that provides function to the
network. (3) See managed resource.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying the users of the system, by
authorizing access to protected resources, by logging
the detected unauthorized attempts to enter the system,
and by logging the detected accesses to protected
resources.

resource label. In the NetView Graphic Monitor
Facility, the textual information that identifies a particular
aggregate or real resource. The resource label is
displayed next to the resource symbol and cannot be
changed by the network operator.

resource level. In Tivoli NetView for OS/390, the
hierarchical position of a device (and the software
contained within it) in a data processing system. For
example, a first-level resource could be the
communication controller, and the second-level resource
could be the line connected to it.

resource manager. In Tivoli NetView for OS/390, an
application program that manages specific network
resources. Each resource manager is assigned a
unique range of command indicators that specify the
command support characteristics for the resources that
it manages. The resource manager provides information
to the NetView Graphic Monitor Facility (NGMF).

Resource Object Data Manager (RODM). In Tivoli
NetView for OS/390, a component that operates as a
cache manager and that supports automation
applications. RODM provides an in-memory cache for
maintaining real-time data in an address space that is
accessible by multiple applications.

resource resolution table (RRT). In NetView
Performance Monitor (NPM), a table that contains the
names of the network resources for which data is to be
collected. The NPM RRT corresponds with an NCP and
is built by NPMGEN from an NCP Stage I and an NCP
RRT.

resource status collector. In Tivoli NetView for
OS/390, a function that collects status information on
monitored resources and forwards this information to
the resource status manager.

resource status manager. The part of the NetView
Graphic Monitor Facility that maintains a database of

SNA resource status information and that forwards this
information to all attached server workstations.

resource symbol. In the NetView Graphic Monitor
Facility, a geometric shape (such as a line, square, or
octagon) that represents a particular kind of resource
and indicates whether that resource is one resource or
a composite of a group of resources.

resource type. (1) In a Tivoli environment, one of the
properties of a managed resource. Resource types are
defined in the default policy for a policy region. (2) In
Tivoli NetView for OS/390, one of the three elements,
which also include data type and display type, that are
used to describe the organization of panels. Resource
types in one category include central processing unit,
channel, control unit, and I/O device; and in another
category, they include communication controller,
adapter, link, cluster controller, and terminal.

response level. See alarm level.

response time. (1) The elapsed time between the end
of an inquiry or demand on a computer system and the
beginning of the response; for example, the length of
time between an indication of the end of an inquiry and
the display of the first character of the response at a
user terminal. (I) (A) (2) For response time monitoring,
the time from the activation of a transaction until a
response is received, according to the response time
definition coded in the performance class.

response time monitor (RTM). A feature available
with certain hardware devices to allow measurement of
response times, which may be collected and displayed
by Tivoli NetView for OS/390.

review file. In the NetView Performance Monitor
(NPM), a VSAM key-sequenced data set (KSDS)
containing data collected and recorded as a result of a
network start display command or start monitor
command.

RFC. See Request for Comments.

RIM. See RDBMS Interface Module.

RIM repository. See configuration repository.

RODM. See Resource Object Data Manager.

RODM-based view. In the NetView Graphic Monitor
Facility (NGMF), a view that is predefined or
dynamically built based on definitions in RODM.
Examples of a RODM-based view are network views,
exception views, configuration views, and more-detail
views.

RODM resource. In the context of NetView Graphic
Monitor Facility (NGMF) views, an object created in
RODM to represent a resource. These objects can be
created by loader files, user applications, or by the SNA
topology manager.

Glossary 129

role. See authorization role.

root directory. The highest level directory in a
hierarchical file system.

root user. In the UNIX operating system, a user who
has superuser authority.

ROPS. See Remote Operations Service.

router. (1) A computer that determines the path of
network traffic flow. The path selection is made from
several paths based on information obtained from
specific protocols, algorithms that attempt to identify the
shortest or best path, and other criteria such as metrics
or protocol-specific destination addresses. (2) An
attaching device that connects two LAN segments,
which use similar or different architectures, at the
reference model network layer. (3) In OSI terminology, a
function that determines a path by which an entity can
be reached. (4) Contrast with bridge.

RPC. See remote procedure call.

RRT. See resource resolution table.

RS/6000. A family of workstations and servers based
on IBM’s POWER architecture. They are primarily
designed for running multiuser numerical computing
applications that use the AIX operating system.

RTM. See response time monitor.

rule. In the Tivoli Enterprise Console, a set of one or
more logical statements that enable the event server to
recognize relationships among events (event
correlation) and to execute automated responses
accordingly.

rule base. In the Tivoli Enterprise Console, a set of
rules and the event class definitions for which the rules
are written. The Tivoli Enterprise Console uses the rule
base in managing events. An organization can create
many rule bases, with each rule base fulfilling a different
set of needs for network computing management.

S
SAF. See System Authorization Facility.

scalable. Pertaining to the capability of a system to
adapt readily to a greater or lesser intensity of use,
volume, or demand. For example, a scalable system
can efficiently adapt to work with larger or smaller
networks performing tasks of varying complexity.

scanner. In a Tivoli environment, the software installed
on each PC managed node that is to be scanned by
Tivoli Inventory.

scheduler. A computer program designed to perform
functions such as scheduling, initiation, and termination
of jobs. (A)

schema. The set of statements, expressed in a data
definition language, that completely describe the
structure of a database.

scope check. In Tivoli NetView for OS/390, the
process of verifying that an operator is authorized to
issue a particular command. Contrast with span check.
See scope of command authorization.

scope of command authorization. In Tivoli NetView
for OS/390, the level of access authority that a system
programmer or system administrator grants to a network
operator to use various commands. See scope check.

script. (1) A computer program that is interpreted. (2)
See shell script.

script stub. A placeholder for a particular shell script.
For example, the Tivoli Module Builder generates a
script stub (using a skeleton file) if a developer does not
provide the script for implementing a particular task or
monitor when defining the task or monitor; the script
stub then displays a message that the script executed
successfully and displays any variables that were
passed to the script.

search path. See path.

seat. A slang term that refers to the number of
licensed users of a software product, which is the same
as the number of installations of the product. For
example, if there were 100 Lotus Notes™ seats, there
would be 100 licensed users of Lotus Notes (or 100
installations of Lotus Notes).

secondary database. One of two databases provided
by Tivoli NetView for OS/390 for recording data. It
provides backup or a temporary storage alternative to
the primary database. See primary database.

security group. In a Tivoli environment, a group of
managed resources over which a Tivoli administrator is
granted authority. Examples of a security group include
a policy region and the administrator collection.

security management. The Tivoli management
discipline that addresses the organization’s ability to
control access to applications and data that are critical
to its success. See availability management,
deployment management, and operations and
administration.

seed file. In Tivoli NetView, a file that contains a list of
nodes within an Administrative Domain, which the
automatic discovery function uses to accelerate the
generation of the network topology map.

segment. (1) A portion of a computer program that
may be executed without the entire computer program
being resident in main storage. (T) (2) A group of
display elements. (3) A section of cable between
components or devices. A segment may consist of a
single patch cable, several patch cables that are

130 Configuration Guide

connected, or a combination of building cable and patch
cables that are connected. (4) In the Enhanced
X-Windows Toolkit, one or more lines that are drawn but
not necessarily connected at the endpoints. (5) In LANs
or WANs, a subset of nodes in a network or subnet that
are connected by a common physical medium.

senior role. See authorization role.

server. A functional unit that provides services to one
or more clients over a network. Examples include a file
server, a print server, and a mail server.

server workstation. In the NetView Graphic Monitor
Facility, a workstation with the graphic data server. This
workstation uses the graphic monitor and the view
administrator for administrative functions. The server
workstation sends status information to client
workstations over an LU 6.2 session.

Service Level Reporter (SLR). A licensed program
that generates management reports from data sets such
as System Management Facility (SMF) files.

service point (SP™). An entry point that supports
applications providing network management for
resources that are not under its direct control as an
entry point. Each resource is either under the direct
control of another entry point or not under the direct
control of any entry point. A service point accessing
these resources is not required to use SNA sessions
(unlike a focal point).

Service Point Application Router. In
Communications Server, software that receives
commands issued from Tivoli NetView for OS/390 and
sends these commands to an application program,
called the Remote Operations Service (ROPS), to be
processed on a client workstation.

service point command facility (SPCF). A program
or function that exchanges data and control between
the network operator, the link connection component
manager (LCCM), and the link connection subsystem
manager (LCSM).

service point command service (SPCS). In Tivoli
NetView for OS/390, an extension of the command
facility that allows the host processor to communicate
with a service point by using the communication
network management (CNM) interface.

session data. Session awareness data, session trace
data, and session response time data that Tivoli
NetView for OS/390 collects.

session manager (SM). A product, such as NetView
Access Services, that allows a user at a terminal to log
on to multiple applications concurrently.

session monitor. In Tivoli NetView for OS/390, the
component that collects and correlates session-related

data and provides online access to this information.
Contrast with hardware monitor.

session setup failure notification (SSFN). In Tivoli
NetView for OS/390, session awareness data that is
provided when there is a failure. It identifies the system
services control point (SSCP) that detects the error, the
SSCPs that are involved, and the names of the session
partners affected.

session statistics file. In the NetView Performance
Monitor (NPM), an online VSAM key-sequenced data
set (KSDS) used for storing session data.

session trace. In Tivoli NetView for OS/390, the
function that collects session trace data for sessions
involving specified resource types or involving a specific
resource.

session trace data. Data, relating to sessions, that is
collected by Tivoli NetView for OS/390 whenever a
session trace is started and that consists of session
activation parameters, VTAM path information unit (PIU)
data, and NCP data.

severity level. In the Tivoli Enterprise Console, a
classification for an event that indicates its degree of
severity. Severity levels can be modified by a user or a
Tivoli Enterprise Console rule. The predefined severity
levels, in order of descending severity, include: fatal,
critical, warning, minor, harmless, and unknown.

shared application program. In Tivoli NetView, an
application program that serves multiple action requests;
however, only one instance of the application program
can run in a given graphical user interface (GUI).

shared submap. In Tivoli NetView, a submap on
which multiple application programs manage objects on
the application plane. Shared submaps allow application
programs to cooperatively contribute information to the
same submap. Contrast with exclusive submap.

shell. A software interface between a user and the
operating system of a computer. Shell programs
interpret commands and user interactions on devices
such as keyboards, pointing devices, and
touch-sensitive screens and communicate them to the
operating system. Shells simplify user interactions by
eliminating the user’s concern with operating system
requirements. A computer may have several layers of
shells for various levels of user interaction.

shell procedure. See shell script.

shell prompt. In the UNIX operating system, the
character string on the command line indicating that the
system can accept a command (typically the $
character).

shell script. In the UNIX operating system, a series of
commands, combined in a file, that carry out a particular

Glossary 131

function when the file is run or when the file is specified
as a value to the SH command.

show cause. The reason code in the record
maintenance statistics (RECMS) that indicates to VTAM
or to Tivoli NetView for OS/390 the threshold that was
exceeded and whether the threshold has been
dynamically altered.

SIA. System Information Agent. See Tivoli Distributed
Monitoring, the product that replaces the System
Information Agent.

signal. In computer software, a message that is sent
to a process to change its behavior based on the value
sent to it.

signature. In computer software, the name of an
operation and its parameters.

simple connection. In Tivoli NetView, the
representation of connectivity as seen from one
endpoint of a connection.

Simple Network Management Protocol (SNMP). In
the Internet suite of protocols, a network management
protocol that is used to monitor routers and attached
networks. SNMP is an application layer protocol.
Information on devices managed is defined and stored
in the application’s Management Information Base
(MIB).

singular filter. A filter that identifies a host, subnet, or
all hosts with a single expression.

skeleton file. A program template that the Tivoli
Module Builder uses to generate any text-based file,
including scripts, Java or C source files, build files, and
help text. A skeleton file includes substitution variables
that are replaced at run time. The values for these
variables originate from user-defined variables or values
specified in a component description file (CDF) or a
global description file (GDF) file.

SLR. See Service Level Reporter.

SMF. See System Management Facility.

SMIT. See System Management Interface Tool.

SMS. See Storage Management Subsystem.

snapshot. In Tivoli NetView, a copy of a map that
reflects the topology and status of the map’s nodes and
links at a given moment in time.

SNATM. See SNA topology manager.

SNA topology manager (SNATM). In Tivoli NetView
for OS/390, a component that dynamically collects
status and topology data into the Resource Object Data
Manager (RODM) for display by the NetView Graphic
Monitor Facility (NGMF). SNATM includes the function

formerly provided by the APPN Topology and
Accounting Manager (APPNTAM) feature of NetView for
MVS V2R4.

SNMP. See Simple Network Management Protocol.

Software Installer for OS/2. An OS/2-based tool that
is used to install workstation functions such as the
NetView Graphic Monitor Facility.

software management. See change management.

source host. In Tivoli Software Distribution, the
managed node on which the files and directories
referenced in a file package reside.

span. In Tivoli NetView for OS/390, a user-defined
group of network resources within a single domain.
Spans provide a level of security by allowing the system
administrator to define (a) the resources to which an
operator can issue commands, (b) the views of
resources that an operator can display, and (c) the
resources in a view that an operator is allowed to see
(an operator may not be authorized to see all the
resources in a particular view). See span check.

span check. In Tivoli NetView for OS/390, the process
of verifying that an operator is authorized to perform
actions on a network resource, a NetView Graphic
Monitor Facility (NGMF) view, or a resource within a
view. Contrast with scope check.

SPA Router. See Service Point Application Router.

SPCF. See service point command facility.

SQL. A programming language that is used to define
and manipulate data in a relational database.

SRF. See symbol registration file.

SSFN. See session setup failure notification.

SSI. See subsystem interface.

stage. In Tivoli NetView for OS/390, a program that
processes messages in a NetView pipeline. Stages
send messages to each other serially.

statistics record. In Tivoli NetView for OS/390, a
resource-generated database record that contains
various statistics about a resource.

status monitor. In Tivoli NetView for OS/390, a
component that collects and summarizes information on
the status of resources defined in a VTAM domain.

Storage Management Subsystem (SMS). A
DFSMS/MVS facility that is used to automate and
centralize the management of storage. Using SMS, a
storage administrator describes data allocation
characteristics, performance and availability goals,
backup and retention requirements, and storage
requirements to the system.

132 Configuration Guide

Structured Query Language. See SQL.

subagent. In the Simple Network Management
Protocol (SNMP), something that provides an extension
to the utility provided by the SNMP agent.

submap. In Tivoli NetView, a particular view of some
aspect of a network that displays symbols representing
objects. The application program that creates a submap
determines what part of the network the submap
displays.

submap pane. The area of a submap window in which
the submap is displayed.

submap stack. In Tivoli NetView, a component of the
graphical user interface shown on the left side of each
submap window. The submap stack represents the
navigational path used to reach the particular submap,
and it can be used to select a previously viewed
submap.

submap window. In Tivoli NetView, the graphical
component that contains a menu bar, a submap viewing
area, a status line, and a button box. A user can display
multiple submap windows of an open map and an open
snapshot at any given time. See primary window.

subnetwork. Any group of nodes that have a set of
common characteristics, such as the same network ID.

subscriber. In a Tivoli environment, a Tivoli client, a
profile manager, or any endpoint type (for example, a
PC managed node or a proxy endpoint) that is
subscribed to a profile manager. Although profiles are
distributed to a subscriber, the subscriber may or may
not be the final destination of the profile distribution.

subscription. In a Tivoli environment, the process of
identifying the subscribers to which profiles will be
distributed.

subscription list. In a Tivoli environment, a list that
identifies the subscribers to a profile manager. Including
a profile manager on a subscription list (in effect, a list
within a list) is a way of subscribing several resources
simultaneously rather than adding each one individually.
In Tivoli Plus modules, a profile manager functions as a
subscription list.

subsystem interface (SSI). The MVS interface by
which routines (IBM-, vendor-, or installation-written)
request services of, or pass information to, subsystems.
The SSI is used by Tivoli NetView for OS/390 to receive
system messages and enter system commands (when
used with extended MCS consoles, it is used to receive
commands, not messages), and to communicate with
other instances of Tivoli NetView for OS/390.

super role. See authorization role.

superuser authority. In the UNIX operating system,
the unrestricted authority to access and modify any part

of the operating system, usually associated with the
user who manages the system. See root user.

suppression character. In Tivoli NetView for OS/390,
a user-defined character that is coded at the beginning
of a command list statement or a command to prevent
the statement or command from appearing on the
operator’s terminal screen or in the network log.

symbol. In Tivoli NetView, a picture or an icon on a
submap that represents an object (a network resource
or an application). Each symbol belongs to a class,
represented by the symbol’s shape, and to a subclass,
represented by the design within the shape. The symbol
reflects characteristics of the object it represents, such
as its status; it also has characteristics of its own, such
as behavior.

symbol registration file (SRF). In Tivoli NetView, a
file used to define symbol classes and subclasses.

synchronous monitor. In Tivoli Distributed Monitoring,
a monitor that monitors resources on a periodic basis
(most monitors are synchronous). Contrast with
asynchronous monitor.

sysplex. A set of MVS or OS/390 systems
communicating and cooperating with each other through
certain multisystem hardware components and software
services to process customer workloads. This term is
derived from “system complex.”

System Authorization Facility (SAF). An interface
defined by MVS that enables programs to use system
authorization services in order to protect access to
resources such as data sets and MVS commands. The
IBM Resource Access Control Facility (RACF) is a
product that uses the SAF interface.

system configuration. A process that specifies the
devices and programs that form a particular data
processing system.

System Information Agent (SIA). See Tivoli
Distributed Monitoring, the product that replaces the
System Information Agent.

System Management Facility (SMF). A standard
feature of OS/390 that collects and records a variety of
system and job-related information.

System Management Interface Tool (SMIT). An
interface tool of the AIX operating system for installing,
maintaining, configuring, and diagnosing tasks.

systems management. (1) Functions in the
application layer related to the management of Open
Systems Interconnection (OSI) resources and their
status across all layers of the OSI architecture. (I) (2)
The tasks involved in maintaining computer and
communication systems, for example: changing

Glossary 133

configuration, identifying faults, securing access,
accounting for resource usage, and analyzing
performance.

T
TACF. See Tivoli Access Control Facility.

TACF database. In Tivoli Security Management, a
database that contains the customized rules that the
authorization daemon for the Tivoli Access Control
Facility (TACF) uses to allow or to deny resource
accesses in the UNIX environment.

TACF lookaside database. In Tivoli Security
Management, a database that provides ID-to-name
resolution, thereby enabling the Tivoli Access Control
Facility (TACF) to convert UNIX IDs (user IDs, group
IDs, IP addresses, and port numbers) to names at run
time.

TAF. See terminal access facility.

TAP. See Telocator Alphanumeric Protocol.

target. See endpoint and execution target.

target host. See endpoint.

task. (1) In a multiprogramming or multiprocessing
environment, one or more sequences of instructions
treated by a control program as an element of work to
be accomplished by a computer. (I) (A) (2) In a
Tivoli environment, the definition of an action that must
be routinely performed on various managed nodes
throughout the network. A task defines the executables
to be run when the task is executed, the authorization
role required to execute the task, and the user or group
name under which the task will execute.

task endpoint. See endpoint.

task library. In a Tivoli environment, a container in
which a Tivoli administrator can create and store tasks
and jobs.

Task Library Language (TLL). In a Tivoli
environment, a programming language used to define a
task library. The TLL definition can be used to copy a
task library from one installation to another. The TLL
also allows the arguments for each task to be described
such that graphical user interface (GUI) tools can
interpret them and present an interface for operators
who want to create the tasks.

TCP/IP. See Transmission Control Protocol/Internet
Protocol.

Telocator Alphanumeric Protocol (TAP). An industry
standard protocol for the input of paging requests.

terminal access facility (TAF). In Tivoli NetView for
OS/390, a facility that allows a network operator to

control a number of subsystems. In a full-screen or
operator control session, operators can control any
combination of such subsystems simultaneously.

threshold. In software products, a value that defines a
limit for a monitored condition. The monitored condition,
the significance of the limit, and the particular software
product’s response when the monitored condition
reaches the specified threshold vary widely according to
product.

throttle. In Tivoli NetView, a condition defined in the
filter table and used to regulate the flow of traps.

time to live (TTL). A technique used by best-effort
delivery protocols to inhibit endlessly looping packets.
The packet is discarded if the TTL counter reaches 0.

Tivoli Access Control Facility (TACF). In Tivoli
Security Management, an object-oriented security
system that runs on UNIX-based operating systems and
provides security functions that are not available on
UNIX (such as an access rule database, an audit log,
and administration tools). TACF is invoked immediately
after the operating system has completed its
initialization, and it places hooks in system services that
should be protected, thereby enabling control to be
passed to TACF before the services are performed.

Tivoli administrator. In a Tivoli environment, a system
administrator who has been authorized to perform
systems management tasks and manage policy regions
in one or more networks. Each Tivoli administrator is
represented by an icon on the Tivoli desktop.

Tivoli Application Development Environment. A
Tivoli toolkit that contains the complete application
programming interface (API) for the Tivoli Management
Framework. This toolkit enables customers and Tivoli
Partners to develop their own applications for the Tivoli
environment.

Tivoli Application Extension Facility. A Tivoli toolkit
that enables customers to extend the capabilities of
Tivoli applications. For example, customers can add
fields to a dialog, create custom attributes and methods
for application resources, or create custom icons and
bitmaps.

Tivoli client. A client of a Tivoli server. See TMR client
and TMR server.

Tivoli Cross-Site®. The integrated suite of Tivoli
products for managing an e-commerce environment to
ensure that Web resources are secure and available
and to enable applications and information to be
distributed and maintained across the extended
enterprise.

Tivoli Decision Support. A Tivoli product that
consolidates, transforms, and presents IT data in many
different views, enabling an enterprise to gain insight

134 Configuration Guide

into patterns and relationships among the data and to
make critical business decisions based on this data.

Tivoli desktop. In a Tivoli environment, the desktop
that system administrators use to manage their network
computing environment.

Tivoli Developer Kit. See Tivoli Module Designer.

Tivoli Distributed Monitoring. A Tivoli product that
monitors system resources, initiates any necessary
corrective actions, and informs system administrators of
potential problems. Tivoli Distributed Monitoring consists
of a group of monitors that are installed on each
managed node that is to be monitored. It resolves some
events on its own and may send others to the Tivoli
Enterprise Console.

Tivoli Enterprise Console. A Tivoli product that
collects, processes, and automatically initiates corrective
actions for system, application, network, and database
events; it is the central control point for events from all
sources. The Tivoli Enterprise Console provides a
centralized, global view of the network computing
environment; it uses distributed event monitors to collect
information, a central event server to process
information, and distributed event consoles to present
information to system administrators.

Tivoli Enterprise software. The integrated suite of
Tivoli products for systems management in a large
organization. These products enable system
administrators to manage their network computing
enterprise according to the disciplines of availability
management, deployment management, operations and
administration, security management, and service-level
management. This suite includes Tivoli Global
Enterprise Manager, Tivoli NetView for OS/390, and
Tivoli Decision Support.

Tivoli environment. The Tivoli applications, based
upon the Tivoli Management Framework, that are
installed at a specific customer location and that
address network computing management issues across
many platforms. In a Tivoli environment, a system
administrator can distribute software, manage user
configurations, change access privileges, automate
operations, monitor resources, and schedule jobs.

Tivoli Event Integration Facility. A Tivoli toolkit that
provides a simple application programming interface
(API) to enable customers and Tivoli Partners to
develop new event adapters that can forward events to
the Tivoli Enterprise Console. A customer can also
translate events from third-party or in-house
applications.

Tivoli GEM. See Tivoli Global Enterprise Manager.

Tivoli GEM module. In a Tivoli environment, a
management module that enables a particular
application or business system to be managed by the
Tivoli Global Enterprise Manager (Tivoli GEM).

Tivoli Global Enterprise Manager (Tivoli GEM). A
Tivoli product that allows system administrators to
graphically monitor, control, and configure applications
residing in distributed and host (S/390®) environments
and to use the concept of business systems
management to organize related components, thereby
providing a business perspective for management
decisions. Tivoli Global Enterprise Manager gives
information technology staff a logical view of the
computing environment; this view shows, at a glance,
the status of the multiple applications that comprise the
enterprise’s business system, including application
components, the relationships among and between
components, and the flow of data between the
applications. By providing this view from a business
perspective, Tivoli Global Enterprise Manager enables
system administrators to quickly make determinations
about the business impact of any component failure.
Addressing technology problems from the business
perspective greatly improves the effectiveness of
system administrators and provides a higher level of
service to users.

Tivoli install image. In a Tivoli environment, a file that
resides on a CD or in a file system and contains a Tivoli
product to be installed. A Tivoli install image can be
used to install the Tivoli Management Framework or to
install an application onto the Framework for the first
time. A single CD often includes both a Tivoli install
image and a Tivoli upgrade image, and it may include
Tivoli install images for more than one application.
Contrast with Tivoli upgrade image.

Tivoli Inventory. A Tivoli product that enables system
administrators to gather hardware and software
information for a network computing environment. It
scans the managed resources and stores inventory
information in the configuration repository.

Tivoli IT Director. A Tivoli product for systems
management in a small or medium organization. It is not
sold directly by Tivoli Systems Inc. but rather through a
Tivoli authorized reseller.

Tivoli LAN Access. A Tivoli product that enables
system administrators to extend existing LAN
management tools by integrating them with the Tivoli
suite of products.

Tivoli management agent. In the Tivoli environment,
an agent that securely performs administrative
operations.

Tivoli Management Framework. The base software
that is required to run the applications in the Tivoli
product suite. This software infrastructure enables the
integration of systems management applications from
Tivoli Systems Inc. and the Tivoli Partners. The Tivoli
Management Framework includes the following:

v Object request broker (oserv)

v Distributed object database

Glossary 135

v Basic administration functions

v Basic application services

v Basic desktop services such as the graphical user
interface

In a Tivoli environment, the Tivoli Management
Framework is installed on every client and server;
however, the TMR server is the only server that holds
the full object database.

Tivoli management gateway. In the Tivoli
environment, a system that enables bidirectional
communication with Tivoli Management Agents.

Tivoli Management Region (TMR). In a Tivoli
environment, a Tivoli server and the set of clients that it
serves. An organization can have more than one TMR.
A TMR addresses the physical connectivity of resources
whereas a policy region addresses the logical
organization of resources.

Tivoli management software. The overall descriptor
for software from Tivoli Systems Inc., which includes
Tivoli Enterprise software (for systems management in a
large organization), Tivoli IT Director (for systems
management in a small or medium organization), and
Tivoli Cross-Site (for the management of e-commerce
systems). Tivoli management software enables
organizations to centrally manage their computing
resources (including the critical applications that drive
business performance and profits) in a simple and
straightforward manner.

Tivoli Manager. Tivoli management software that
manages specific vendor systems, networks,
applications, or databases.

Tivoli Module Builder (TMB). A Tivoli product that
enables developers to create a special type of file,
called a management module, for managing an
application or business system with Tivoli management
software. Management modules include Tivoli GEM
modules and Tivoli Plus modules. The Tivoli Module
Builder provides tools (such as the Tivoli Module
Designer) and templates for describing the management
characteristics of an application or business system and
for building this information (together with the scripts,
programs, and files that are required to implement the
management function) into a Tivoli install image or an
application management package. The Tivoli Module
Builder uses file types defined in the Application
Management Specification (AMS).

Tivoli Module Designer (TMD). A Tivoli tool that
enables developers to describe the management
characteristics of an application or business system and
that generates the application description files and
application management packages that the Tivoli
management software uses to manage applications and
business systems. The Tivoli Module Designer replaces
the Tivoli Developer Kit.

Tivoli NetView. A Tivoli product that enables
distributed network management across multiple
operating systems and protocols. Unlike Tivoli NetView
for OS/390, Tivoli NetView does not provide centralized
management from an OS/390 host.

Tivoli NetView for OS/390. A Tivoli product that
enables centralized systems and network management
from an OS/390 environment. Through its MultiSystem
Manager component, Tivoli NetView for OS/390 enables
management of distributed resources, such as Internet
Protocol (IP) resources, NetWare resources,
asynchronous transfer mode (ATM) resources, and
others. Contrast with Tivoli NetView.

Tivoli NetWare repeater (TNWR). In a Tivoli
environment, a server application that is installed on a
Novell NetWare server and that maintains a list of
available clients for the server. The Tivoli NetWare
repeater works with the NetWare managed site to
perform profile distribution.

Tivoli Partner Association. A partnership program
that is led by Tivoli Systems Inc. for business, industry,
and product partners. The Tivoli Partner Association
provides programs and benefits for business partners
(including systems integrators, outsourcers, and
resellers) to sell Tivoli Enterprise and IT Director
products. Industry and product partners collaborate with
Tivoli Systems Inc. in creating hardware and software
products that are Tivoli Ready.

Tivoli Plus module. In a Tivoli environment, a
management module that has been certified by the
Tivoli Partner Association and that enables a specific
vendor application to be managed by Tivoli
management software. To be certified by the Tivoli
Partner Association, the Tivoli Plus module must include
certain features such as enablement for the Tivoli
Global Enterprise Manager (Tivoli GEM).

Tivoli Ready. Pertaining to a product that has passed
rigorous product certification testing by Tivoli Systems
Inc. to ensure that the product delivers turnkey (or
″out-of-the-box″) integration with Tivoli management
software. A product that has passed this certification
testing carries the Tivoli Ready logo.

Tivoli Remote Control. A Tivoli product that enables a
Tivoli administrator to control mouse and keyboard
operations on an NT managed node or a PC managed
node.

Tivoli Remote Execution Service. A service that
enables a Tivoli environment to perform remote
operations on machines. These operations include:
remotely installing clients, connecting Tivoli
Management Regions (TMRs), and starting oserv from
a remote machine.

Tivoli Security Management. Tivoli Enterprise
software that enables the consistent definition,

136 Configuration Guide

implementation, and enforcement of security policy in a
network computing environment.

Tivoli server. The server that holds or references the
complete set of Tivoli software, including the full object
database. See Tivoli client, TMR client, and TMR server.

Tivoli Service Desk for OS/390. A Tivoli product that
is an integrated set of tools, services, and interfaces for
automating and customizing a organization’s IT service
and support operation in an OS/390 environment. It
provides a structure that supports the gathering,
organizing, locating, and reporting of information related
to problem, change, and asset management.

Tivoli Software Distribution. A Tivoli product that
automates software distribution to clients and servers in
a network computing environment. An organization can
use this product to install and update applications and
software in a coordinated, consistent manner across a
network. Tivoli Software Distribution creates file
packages and distributes them to predefined
subscribers.

Tivoli upgrade image. In a Tivoli environment, a file
that resides on a CD or in a file system and contains
updates for a Tivoli product. A Tivoli upgrade image
contains only the files that have changed since the
previous product release, with the scripts and
commands that are needed for installing the new files
and configuring the database. Contrast with Tivoli install
image.

Tivoli User Administration. A Tivoli product that
provides a graphical user interface (GUI) for centralized
management of user and group accounts. It offers
efficient, automated management of user and system
configuration parameters, secure delegation of
administrative tasks, and centralized control of all user
and group accounts in a network computing
environment.

Tivoli UserLink. A Tivoli product that provides IP
address synchronization between a PC agent and its
associated PC managed node using the Dynamic Host
Configuration Protocol (DHCP). Tivoli UserLink also
enables a PC user to pull a file package to a Windows,
Windows 95, or Windows NT workstation.

TLL. See Task Library Language.

TMB. See Tivoli Module Builder.

TMD. See Tivoli Module Designer.

TME 10. See Tivoli Enterprise software.

TMR. See Tivoli Management Region.

TMR client. In a Tivoli environment, any
computer—except the TMR server—on which the Tivoli
Management Framework is installed. The oserv daemon

runs on the TMR client, and the TMR client maintains a
local object database. See Tivoli client and Tivoli server.

TMR server. A Tivoli server for a specific Tivoli
Management Region (TMR). See Tivoli client and TMR
client.

TNWR. See Tivoli NetWare repeater.

toggle button. In the AIXwindows Toolkit and the
Enhanced X-Windows Toolkit, a graphical object that
simulates a toggle switch; it switches sequentially from
one optional state to another.

tool palette. In Tivoli NetView, a component of the
graphical user interface (GUI) that enables the network
operator to open application program instances by using
the mouse to drag and drop the icons that represent the
application program.

topology. In communications, the physical or logical
arrangement of nodes in a network, especially the
relationships among nodes and the links between them.

topology console. In the Tivoli Global Enterprise
Manager and Tivoli NetView for OS/390, a Java-based
graphical user interface that displays business system
information from the topology server. The topology
console displays each component as a separate icon or
shape and draws lines between icons to denote links. It
then uses color to indicate the status of each
component and of the business system as a whole. As
the topology server receives configuration and status
updates for the business system, it updates the
topology console. Therefore, the topology console
always displays the real-time configuration and status of
the business system.

topology database. See local topology database and
network topology database.

topology database update (TDU). A message about
a new or changed link or node that is broadcast among
APPN network nodes to maintain the network topology
database, which is fully replicated in each network
node. A TDU contains information that identifies the
following:

v The sending node

v The node and link characteristics of various
resources in the network

v The sequence number of the most recent update for
each of the resources described.

topology server. In Tivoli Global Enterprise Manager
and Tivoli NetView for OS/390, a server that interacts
with instrumented applications in a business system and
provides information for display on the topology console.
The topology server receives heartbeat events from
instrumented applications or components and
determines the business system in which a component
belongs. The topology server also queries instrumented
applications for related applications and for the status of

Glossary 137

its monitors. All of this information is used to create and
maintain a view of each business system’s configuration
and availability on the topology console.

trace. A record of the execution of a computer
program. It exhibits the sequences in which the
instructions were executed. (A)

transaction. A specific set of input data that triggers
execution of a specific process or job; a message
destined for an application program.

transit time. See response time.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communications protocols that
support peer-to-peer connectivity functions for both local
and wide area networks.

trap. In the Simple Network Management Protocol
(SNMP), a message sent by a managed node (agent
function) to a management station to report an
exception condition.

triggered response. In a Tivoli environment, the
action that is taken when a monitor reaches or exceeds
a threshold.

trouble ticket. In Tivoli NetView, a record of a problem
that has occurred. The trouble ticket becomes the
formal vehicle to trace a problem from its occurrence to
its resolution.

TTL. See time to live.

tuple. In a relational database, a part of a relation that
uniquely describes an entity and its attribute. A tuple
can be represented by one row of a relation table. (T)

U
UDP. See User Datagram Protocol.

underlying connection. In Tivoli NetView, the
representation of lower-layer connectivity that is used by
higher-layer connectivity. For example, the physical
connection that transports data between two IP hosts is
an underlying connection.

unmarshall. To copy data from a remote procedure
call (RPC) packet. Stubs perform unmarshalling.
Contrast with marshall.

upcall. In a Tivoli environment, a method invocation
from an endpoint “up” to the gateway. Contrast with
downcall.

User Datagram Protocol (UDP). In the Internet suite
of protocols, a protocol that provides unreliable,
connectionless datagram service. It enables an
application program on one machine or process to send

a datagram to an application program on another
machine or process. UDP uses the Internet Protocol
(IP) to deliver datagrams.

user login map. In a Tivoli environment, a mapping
that associates a single user login name with a user
account on a specified operating system. User login
maps enable Tivoli administrators to log in to the Tivoli
environment or perform operations within the Tivoli
environment with a single user login name, regardless
of the system that they are currently using.

user plane. In Tivoli NetView, the submap layer on
which symbols of objects that are not managed by an
application program are displayed. Symbols on the user
plane are displayed with a shadow, which makes them
appear higher than symbols on the application plane.
See background plane.

user profile. (1) In computer security, a description of
a user that includes such information as user ID, user
name, password, access authority, and other attributes
obtained at logon. (2) In Tivoli User Administration, a
profile that is used to manage user accounts, including
account information, home directories, startup files, and
group membership.

user role. See authorization role.

using node. The NCP in the host’s domain that
reports a link error condition.

V
validation. The checking of data for correctness or for
compliance with applicable standards, rules, and
conventions. (A)

validation policy. In a Tivoli environment, policy that
ensures that all resources in a policy region comply with
the region’s established policy. Validation policy
prevents Tivoli administrators from creating or modifying
resources that do not conform to the policy of the policy
region in which the resources were created.

variable. (1) In programming languages, a language
object that may take different values, one at a time. The
values of a variable are usually restricted to a certain
data type. (I) (2) A quantity that can assume any of a
given set of values. (A) (3) A name used to represent
a data item whose value can be changed while the
program is running. (4) In the Simple Network
Management Protocol (SNMP), a match of an object
instance name with an associated value. (5) In the
NetView command list language, a character string
beginning with “&” that is coded in a command list and
is assigned a value during execution of the command
list.

138 Configuration Guide

verb. (1) In Tivoli NetView for OS/390, the first word of
a NetView command that is delimited by a blank or a
comma and that indicates what action is to be taken. (2)
See LU 6.2 verb.

view administrator. The part of the NetView Graphic
Monitor Facility that downloads the views created by the
view preprocessor and that provides these views to the
graphic data server.

viewing filter. In Tivoli NetView for OS/390, the
function that allows a user to select the alert data to be
displayed on a terminal. All other stored data is blocked.

view manager. In the NetView Graphic Monitor
Facility, a facility that generates views according to
Resource Object Data Manager (RODM) definitions and
that provides status changes to the graphic data server.

view preprocessor. The part of the NetView Graphic
Monitor Facility that creates unformatted views of SNA
resources from the VTAM definition library (VTAMLST).

view preprocessor resource. An SNA subarea
resource whose status is reported by the resource
status manager and is stored in the graphic data server
(GDS) databases when views containing the resource
are downloaded.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA network.
It provides single-domain, multiple-domain, and
interconnected network capability.

vital product data (VPD). Information that uniquely
defines system, hardware, software, and microcode
elements of a processing system.

VPD. See vital product data.

VTAM. See Virtual Telecommunications Access
Method.

W
webmaster. The person who is ultimately responsible
for managing and maintaining a particular Web site.

well-behaved application program. An application
program that runs without disruption to the network.

widget. (1) In the AIX operating system, a graphic
device that can receive input from the keyboard or
mouse and can communicate with an application or with
another widget by means of a callback. Every widget is
a member of only one class and always has a window
associated with it. (2) The fundamental data type of the
Enhanced X-Windows Toolkit. (3) An object that
provides a user-interface abstraction; for example, a
Scrollbar widget. It is the combination of an Enhanced

X-Windows window (or subwindow) and its associated
semantics. A widget implements procedures through its
widget class structure.

wildcard character. See pattern-matching character.

with-request. A Printing Systems Manager (PSM)
document transfer method in which the client transfers
documents directly to the server. This is the default
transfer method. Contrast with dce-pipe-pull.

wizard. A dialog within an application that uses
step-by-step instructions to guide a user through a
specific task.

working directory. The directory that is currently in
use by an operating system or application. If no path is
specified, this is the directory to which data is written,
from which data is deleted, or in which data is
searched.

work space. (1) That portion of main storage that is
used by a computer program for temporary storage of
data. (I) (A) (2) In Tivoli NetView, a container for a
set of event cards that meet certain criteria. See event
filter.

wrap count. In Tivoli NetView for OS/390, the number
of events that can be retained in the database for a
specific resource or the number of alerts that are
retained in the database.

X
XCF. See cross-system coupling facility.

X Window System. A software system, developed by
the Massachusetts Institute of Technology, that enables
the user of a display to concurrently use multiple
application programs through different windows of the
display. The application programs may execute on
different computers.

Y
Year 2000 challenge. A term used especially by the
computer industry to refer to the problems, challenges,
and issues involved in preparing computer systems and
applications for transition to, and operation in, the
twenty-first century. For example, many computer
systems and applications use two digits to represent the
year (“97” rather than 1997). When these computer
systems and applications encounter the digits “00” for
the year 2000, they can misinterpret this to mean the
year 1900 and can produce computing errors or fail to
function. Although some systems and applications may
not be affected until the eve of the new millennium (on
31 December 1999), many systems and applications
that use future dates (such as expiration dates for credit
cards) have already experienced Year 2000 problems.
This problem could also affect such things as elevator

Glossary 139

controls; household appliances such as VCRs and
programmable coffee makers; heating, cooling, and
security systems; telephone calls; driver’s licenses;
automated teller machines and bank vaults; and airline
flight schedules.

Year 2000 ready. A product is Year 2000 ready if the
product, when used in accordance with its associated
documentation, is capable of correctly processing,
providing, and/or receiving date data within and
between the twentieth and twenty-first centuries,
provided that all products (for example, hardware,
software, and firmware) used with the product properly
exchange accurate date data with it.

Y2K. See Year 2000 challenge.

Z
zombie process. In the UNIX operating system, a
process that has been terminated but has not been
cleaned up by its parent process. The existence of a
large number of zombie processes could indicate an
errant network daemon or application. Zombie
processes are sometimes called “lingering terminated
processes.”

zoom. In a user interface, to progressively increase or
decrease the size of a part of an image on a screen or
in a window.

Numerics
4700 Support Facility. In Tivoli NetView for OS/390, a
component that enables the monitoring and control of
IBM 3600 and 4700 Finance Communication Systems.
The 4700 Support Facility can record, analyze, and
display performance and status data on IBM 3600 and
4700 Finance Communication Systems.

140 Configuration Guide

Index

A
accessibility information ix
accessing

online information viii
trapgend operations 6

adding
daemons, ovsuf file 25
entries

oid_to_command 52
oid_to_protocol 53
oid_to_sym 47
oid_to_type 49

values, vendor and SNMP agent fields 51
agent community names

configure, when to 55
how Tivoli NetView works with 55

Agent Policy Manager
configuring 57
daemon, defaults and options 36

AIX
High Availability Cluster Multi-Processing Servers

(HACMP) 81
migration options for NDBM databases 92
migration strategies for NDBM databases 92
mounting a CD-ROM 81
NDBM Database Enhancements in Tivoli NetView

Version 5.1 89
NDBM implementation 91
recommended machine types 83
uninstalling trapgend daemon from a remote

node 12
APM

configuring 57
daemon, defaults and options 35

authentication failures 56

B
before you start, what to check 14

C
C5d daemon, defaults and options 36
changing

daemon defaults 30
file owner, group, mode 45
oid_to_type file 49

checking status of daemons 14
clearing

data collection files 65
databases using the Tivoli desktop 67
log and trace files 61
ORS database 69

Client Setup application
configuring and managing a Tivoli NetView client 22
context-sensitive help 22

clients
deinstalling 11

commands
nettl 27
ovaddobj 25
ovstart 23
ovstatus 14
ovstop 27
ovw 13

community names, agent
configure, when to 55
how Tivoli NetView works with 55

compressing the IP topology database 66
configuring

agent community names 55
Agent Policy Manager 57
APM 57
daemons 29
events to be forwarded to the Tivoli Enterprise

Console 57
manager backup 54
netmon

status polling intervals 57
to use a Mid-Level Manager seed file 44
to use a seed file 44

proxy agent 56
relational database 54
SNMP values 54
Tivoli NetView server

using the Server Setup application 21
trapd daemon 61

creating a shell script for trapgend operations
example 8
overview 8
steps 8

crontab entry
creating to clear files 63
description 63
example 64
netmon.trace_Maint script 63
snmpCol.trace_Maint script 63
trapd.trace_Maint script 63

customer support ix
customization, saving

files that migrate 95
V4 or V5 files using the migration scripts 86
V5 files using the Tivoli desktop 85

customizing
events forwarded to the Tivoli Enterprise

Console 58
map layout

using a location file 36
startup process 13
your map 18

D
daemon and process logs, maintaining 61

141

daemons
configuring 29
defaults, changing 30

using the Server Setup application 30
deleting 26
options and defaults 31
registering 25
registering and unregistering

from the command line 25
using the Server Setup application 25

restarting 23
using the Server Setup application 24

starting 23
status 14
stopping 27

from the command line 27
from the Server Setup application 28
using a command 27
using the Tivoli desktop 28

types
APM 35
event and trap processing 32
host connection 35
topology discovery and database 31

understanding 31
unregistering

using the Server Setup application 27
data collection files, maintaining 65
database information

relational
migrating 1

databases
AIX

improvements without NDBM enhancements 91
migration options 92
migration strategies 92
NDBM enhancements in Tivoli NetView V5.1 for

AIX 89
NDBM implementation 91

clearing 67
compressing 66
resolving inconsistencies 66

dbmcompress utility 90
dbmlist utility 90
defaults and options

Agent Policy Manager daemons 35
event and trap processing daemons 32
topology discovery and database daemons 31

defining network management region 18
deinstalling

Tivoli NetView 11
Mid-Level Manager 12

Tivoli NetView client 11
Tivoli NetView server 11
trapgend from a remote node (AIX only) 12

deleting
daemons, ovsuf file 26
unused entries, ovsuf file 67

dient/server access, configuring 2
disability information ix

discovering
IP objects 19
nodes in a seed file range 42
non-IP objects 19

disk space
saving 26, 61, 65

displaying nodes 20
DNS guidelines 78

E
entries

installation 86
ovsuf file, deleting 67

event correlation ruleset 58

F
failures, authentication 56
field definitions

oid_to_command file 52
oid_to_sym file 48
oid_to_type file 49

files
changing owner, group, mode 45
renaming and deleting 1
version 4 and 5 files that migrate 95

files, saving for migration
files that migrate 95
V4 or V5 using the migration scripts 86
V5, using the Tivoli desktop 85

flags, topology attribute 50
format, seed file 39

G
generating the map 17, 18
graphical interface, online help 21
gtmd daemon 32

defaults and options 32

H
hardware failures, including remote nodes alerts 5
help, graphical interface 21
High Availability Cluster Multi-Processing Servers

(HACMP) 81
host connection

daemons 35

I
inconsistencies, database, resolving 66
information, accessibility ix
information, disability ix
installation

entries 86
Tivoli NetView

additional information 2

142 Configuration Guide

installing
migration, saving files for

entries, installation 86
files that migrate 95
running the migration scripts for V4 or V5 86
using the Tivoli desktop for V5 85

Tivoli NetView server
entries, installation 86

IP objects, discovering 19
IP topology database, resolving inconsistencies 66

K
keyboard, shortcut keys ix

L
loading a seed file 44
local registration file (LRF) 25
location file

example 37, 38
for customizing map layout 36
format 36

log and trace files, clearing 61
logging Tivoli NetView output 17

M
maintaining

daemon and process logs 61
data collection files 65
databases 65
trapd.log file 61

manager backup, configuring 54
map generation

customizing 18
restarting 22
using a seed file 19
what to expect 17, 18

map layout
customizing

using a location file 36
dependencies 20
design principles 20

mapping symbols to nodes 46
memory

considerations 74, 75
estimating

additional applications 72
applying the memory sizing formula 73
examples 74
network size 72
number of operators 72
object count as a basis 73

requirements 71
Mid-Level Manager

uninstalling 12
Mid-Level Manager seed file

configuring netmon 44
description 44

migrating from a previous version
databases

NDBM on AIX 92
files

that migrate 95
process

migration script 86
V6, using the Server Setup application 85

relational database information 1
V4.1, V5.0, or V5.1 1

saving files for migration
files that migrate 95
migration script, running 86
using the Tivoli desktop 85

V4 or V5 using the migration scripts 86
V5, using the Tivoli desktop 85

mounting a CD-ROM
AIX 81

N
NDBM

component overview 89
database enhancements 89
implementation 91
utilities 90

dbmcompress 90
dbmlist 90
nvTurboDatabase script 91

netmon daemon
defaults and options 32
seed file

how it affects discovery 40
Mid-Level Manager 44
network discovery 38
specifying which nodes not to discover 42
specifying which nodes to discover 41

netmon.trace shell script 63
nettl facility, stopping 27
netview shell script

description 13
using 17

Solaris requirements 13
network management region, defining 18
network sizing guidelines 79
nodes, displaying 20
non-IP objects, discovering 19
noniptopod daemon, defaults and options 32
nv6000_smit shell script

example 8
using 8

nvTurboDatabase script 91

O
oid_to_command file

adding entries 52
example 52
field definitions 52

oid_to_protocol file
adding entries 53

Index 143

oid_to_protocol file (continued)
example file 53

oid_to_sym registration file
adding entries 47
example changing an entry 48
example file 48
field definitions 48

oid_to_type registration file
adding entries 49
example 49
field definitions 49

online help, graphical interface 21
online information viii
options and defaults

Agent Policy Manager daemons 35
event and trap processing daemons 32
topology discovery and database daemons 31

ORS database, clearing 69
ORS database, deleting entries 69
orsd daemon, defaults and options 33
otmd daemon, defaults and options 32
ovactiond daemon, defaults and options 35
ovelmd daemon, defaults and options 35
ovstart command, description 23
ovsuf file

description 67
example 67

ovtopmd daemon, defaults and options 32
ovwdb daemon, defaults and options 32

P
paging space

guidelines 76
indicators that you need to enlarge 77
when to enlarge 76

platforms supported viii
pmd daemon, defaults and options 33
proxy agent 56

example 56

R
redirecting X Window display 53
registering daemons 25
relational database, using 54
relational database information

migrating 1
removing

client code 11
using commands 68
using the Tivoli desktop 69

daemons, ovsuf file 26
snapshots 68
trapgend daemon, remote nodes 6

resolving database inconsistencies 66
restarting

daemons
using commands 23
using the Tivoli desktop 24

map generation 22

restarting (continued)
Tivoli NetView 17

S
saving

disk space 26, 61, 65
files for migration

files that migrate 95
using the migration script 86
V4 or V5 using the migration scripts 86
V5, using the Tivoli Desktop 85
V6, using the Server Setup application 85

seed file
discovering nodes in a range 42
discovering specific nodes 41
editing

using the Server Setup application 39
format 39

examples 40
guideslines for efficient discovery 79
limiting discovery 42

to nodes individually listed 43
using wildcards 44

non-SNMP devices 38
setup and usage

examples 43
use by netmon 40

looking for nodes without limiting discovery 43
seed files

example 40
format 39
how discovery is affected 40
loading 44
Mid-Level Manager 44
specifying which nodes not to discover 42
specifying which nodes to discover 41
using 38

Server Setup application
adding an entry to the oid_to_sym file 47
adding entries to the oid_to_command file 52
changing daemon defaults 30
changing file owner, group, or mode 45
changing to the oid_to_type file 49
checking daemon status 14
clearing databases 67
clearing log and trace files 61
compressing the IP topology database 66
configuring and managing a Tivoli NetView

server 21
configuring APM 57
configuring client/server access 2
configuring netmon to use an MLM seed file 44
context-sensitive help 21
creatomg a crontab entry 63
deleting entries in the ovsuf file 68
editing a seed file 39
forwarding events to the Tivoli Enterprise

Console 57
maintaining the trapd.log file 62
registering and unregistering daemons 25

144 Configuration Guide

Server Setup application (continued)
removing snapshots 69
resolving database inconsistencies 66
restarting daemons 24
saving files 85
stopping daemons 28
unregistering daemons 27

shortcut keys, keyboard ix
sizing considerations 71
SmartSets 78
snapshots, removing 68

from the command line 68, 69
SNMP agent, starting 23
SNMP values, configuring 54

agent community names 55
netmon status polling intervals 57
proxy 56

snmpCol.trace_Maint shell script 63
snmpCollect daemon, defaults and options 34
starting

daemons 23
SNMP agent 23
Tivoli NetView

customizing startup 13
process 13
using netview shell script 17
using the Server Setup application 17

trapgend daemon, remote nodes 6
startup behavior

customizing 13
description 13

startup process
customizing 13
description 13

status, verifying daemons 14
stopping

daemons
using a command 27
using the Server Setup application 28

nettl facility 27
Tivoli NetView 27
trapgend daemon, remote nodes 6

support, customer ix
swap space

guidelines 76
indicators that you need to enlarge 77
when to enlarge 76

symbols, mapping to nodes 46

T
Tivoli Enterprise Console

configuring Tivoli NetView events to be
forwarded 57

customizing event format 58
Tivoli NetView

configuring 29
client/server access 2
client to access a server 2
event forwarding to the Tivoli Enterprise

Console 57

Tivoli NetView (continued)
configuring (continued)

server to enable client access 2
logging output 17
maintaining 61
migrating from a previous version

files that migrate 95
saving V4 or V5 files using migration scripts 86
saving V5 files using the Tivoli desktop 85

startup process
customizing 13
description 13

stopping 27
uninstalling 11
using

renaming and deleting files 1
Tivoli NetView client

Client Setup application 22
configuring

access to server 2
uninstalling 11

Tivoli NetView server
configuring

client access 2
uninstalling 11

topology attribute flags 50
topology database

clearing 67
compressing 66
resolving inconsistencies 66

trapd daemon
configuring 61
defaults and options 34

trapd.log file, maintaining 61
trapd.log_Maint shell script 61
trapd.trace_Maint shell script 63
trapgend daemon

accessing operations 6
defaults and options 34
including hardware failure alerts 5
installing, remote nodes 5
operations and entry fields, remote nodes 6
remote node options 6
using a shell script 8

trapgend daemon on AIX
uninstalling 12

tuning
AIX 82
considerations 71
Tivoli NetView 78

U
uninstalling

Tivoli NetView 11
Mid-Level Manager 12

Tivoli NetView client 11
Tivoli NetView server 11
trapgend from a remote node (AIX only) 12

unused entries, ovsuf file, deleting 67

Index 145

V
values, vendor and SNMP agent fields, adding 51

X
X Window, redirecting display 53

146 Configuration Guide

	Contents
	Preface
	Who Should Read This Guide
	Prerequisite and Related Documents
	What This Guide Contains
	Typeface Conventions
	Platform-Specific Information
	Online Information
	Accessability Information
	Keyboard Access

	Contacting Tivoli Support

	Chapter 1. Preparing to Use Tivoli NetView
	Renaming and Deleting Files
	Migrating Relational Database Information
	Migrating from NetView Version 5.1 or 6.0

	Additional Information
	Configuring Client/Server Access
	Configuring a Server to Enable Client Access
	Configuring a Client to Access a Server

	Chapter 2. Installing and Using the AIX trapgend Daemon
	Understanding the trapgend Daemon
	Installing and Configuring trapgend Using the Tivoli desktop
	Installing and Configuring trapgend Using a Shell Script
	Example of a Shell Script

	Chapter 3. Uninstalling Tivoli NetView
	Uninstalling a Client
	Uninstalling a Server
	Uninstalling trapgend from a Remote Node (AIX only)
	Uninstalling the Mid-Level Manager

	Chapter 4. Starting and Stopping Tivoli NetView
	Startup Behavior of the netview Shell Script
	Customizing Startup
	Preparing to Start Tivoli NetView
	Checking Daemon Status Using Server Setup

	Starting Tivoli NetView
	Using the netview Shell Script
	Starting Tivoli NetView Using the Tivoli Desktop
	Logging Output
	Generating the Map

	Defining the Network Management Region
	Customizing Your Map
	Customizing Map Layout
	Customizing Discovery
	Discovering IP Objects
	Discovering Non-IP Objects
	Displaying Nodes
	Map Layout Dependencies
	Network Design Principles

	Accessing Online Help for the Graphical User Interface
	Accessing Tivoli NetView Online Books
	Using Server Setup to Configure and Manage a Tivoli NetView Server
	Server Setup Context-Sensitive Help

	Using Client Setup to Configure and Manage a Tivoli NetView Client
	Client Setup Context Sensitive Help

	Restarting Automatic Map Generation
	Steps for Restarting Map Generation

	Restarting the Daemons
	Restarting the Daemons from the Command Line
	Restarting the Daemons Using the Server Setup Application
	Registering and Unregistering the Daemons
	Registering and Starting the Daemons from the Command Line
	Registering and Starting the Daemons Using the Server Setup Application
	Unregistering the Daemons
	Unregistering the Daemons Using the Server Setup Application

	Stopping Tivoli NetView
	Stopping the Daemons
	Stopping the Daemons Using the Command Line
	Stopping the Daemons Using the Server Setup Application

	Chapter 5. Optional Configuration Tasks
	Changing Daemon Defaults
	Changing Daemon Defaults Using the Server Setup Application
	Understanding the Daemons, Options, and Defaults
	Topology Discovery and Database Daemons
	Event and Trap Processing Daemons
	Host Connection Daemons
	Agent Policy Manager Daemon

	Using a Location File to Customize the Map Layout
	Network Entries
	Auto-placement of Routers
	Gateway/Router Entries
	Location.conf File Examples
	Example 1

	Location.conf File Usage Notes

	Using a Seed File to Customize Discovery
	Non-SNMP Devices in a Seed File
	Editing the Seed File Using Server Setup
	Format of a Seed File
	Seed File Format Examples

	How netmon Uses a Seed File
	Discovering Specific Nodes
	Limiting Discovery

	Discovering Nodes in a Seed File Range
	Understanding Examples of Seed File Setup and Usage
	Telling netmon Where to Start Looking for Nodes without Limiting Discovery
	Limiting Discovery to the Nodes Individually Listed in the Seed File
	Limiting Discovery to a Range of Nodes Using Seed File Wildcards

	Configuring netmon to Use an MLM Seed File

	Changing File Owner, Group, or Mode
	Mapping Symbols to Nodes
	Editing the oid_to_sym Registration File
	Steps for Adding an Entry to the oid_to_sym File
	Example of an oid_to_sym File

	Editing the oid_to_type Registration File
	Making Changes to the oid_to_type File
	Example of an oid_to_type File

	Adding Values for Vendor and SNMP Agent Fields

	Editing the oid_to_command Registration File
	Adding Entries to the oid_to_command File
	Example of oid_to_command File
	Field Definitions

	Editing the oid_to_protocol Registration File
	Example of an oid_to_protocol File

	Redirecting X Window Display
	Using a Relational Database for Data Storage
	Configuring for Backup Manager
	Configuring SNMP Values
	Configuring Agent Community Names
	When to Configure Agent Community Names
	Using Alternate Community Names
	Authentication Failure
	Configuring a Proxy Agent
	Configuring netmon Polling Intervals

	Configuring APM
	Forwarding Events to the Tivoli Enterprise Console
	Configuring Tivoli NetView to Forward Events
	Customizing the Tivoli Enterprise Console Event Server

	Chapter 6. Maintaining Tivoli NetView
	Maintaining Daemon and Process Logs
	Clearing Log and Trace Files Using the Server Setup Application
	Maintaining the trapd.log File

	Running Commands at Preset Times
	Creating a crontab Entry
	Example of a Crontab Entry

	Maintaining Data Collection Files
	Maintaining the Databases
	Resolving Database Inconsistencies
	Compressing the IP Topology Database
	Clearing Databases

	Deleting Unused Entries in the ovsuf File
	Example of ovsuf File
	Deleting Entries in the ovsuf File Using the Server Setup Application

	Removing Old Snapshots
	Removing Snapshots Using the Command Line
	Removing Snapshots Using the Server Setup Application

	Cleaning Up the ORS Database

	Appendix A. Memory, Paging Space, Tuning, and Sizing Considerations
	Estimating Memory Requirements
	Determining the Size of the Network
	Determining the Number of Operators
	Determining Memory Requirements for Additional Applications
	Computing Memory Needs Based on Object Count
	Example 1
	Example 2

	Additional Memory Considerations
	Miscellaneous Considerations

	Paging Space Guidelines
	Creating or Enlarging Paging Space
	Indicators That More Paging Space is Required

	Tuning Tivoli NetView
	Network Sizing Guidelines

	Appendix B. Additional Notes for AIX
	Mounting a CD-ROM on AIX
	High Availability Cluster Multi-Processing Servers on AIX
	Tuning Suggestions for AIX Systems
	Recommended AIX Machine Types
	Tuning AIX for Tivoli NetView

	Appendix C. Saving Files and Installation Entries
	Saving Files
	Saving Files Using the Tivoli Desktop (Version 5 and 6)
	Saving Files Using Tivoli NetView Server Setup (Version 6 or Higher)
	Saving Files Using the Migration Script

	Installation Entries

	Appendix D. NDBM Database Enhancements in Tivoli NetView Version 5.1 (AIX only)
	NDBM Component Overview
	New NDBM Utilities
	The dbmcompress Utility
	The dbmlist Utility
	The nvTurboDatabase Script

	Implementation
	Improving Database Performance without NDBM Enhancements
	Migration Options
	Possible Migration Strategies

	Appendix E. Files That Migrate
	Appendix F. Additional Copyright and License Information
	Glossary
	Index

